Metamath Proof Explorer


Theorem uzwo2

Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005)

Ref Expression
Assertion uzwo2 S M S ∃! j S k S j k

Proof

Step Hyp Ref Expression
1 uzssz M
2 zssre
3 1 2 sstri M
4 sstr S M M S
5 3 4 mpan2 S M S
6 uzwo S M S j S k S j k
7 lbreu S j S k S j k ∃! j S k S j k
8 5 6 7 syl2an2r S M S ∃! j S k S j k