Metamath Proof Explorer


Theorem uzxr

Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion uzxr A M A *

Proof

Step Hyp Ref Expression
1 eqid M = M
2 id A M A M
3 1 2 uzxrd A M A *