Metamath Proof Explorer


Theorem uzxrd

Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzxrd.1 Z = M
uzxrd.2 φ A Z
Assertion uzxrd φ A *

Proof

Step Hyp Ref Expression
1 uzxrd.1 Z = M
2 uzxrd.2 φ A Z
3 ressxr *
4 1 2 uzred φ A
5 3 4 sselid φ A *