Step |
Hyp |
Ref |
Expression |
1 |
|
vacn.c |
|
2 |
|
vacn.j |
|
3 |
|
vacn.g |
|
4 |
|
eqid |
|
5 |
4 3
|
nvgf |
|
6 |
|
rphalfcl |
|
7 |
6
|
adantl |
|
8 |
|
simplll |
|
9 |
4 1
|
imsmet |
|
10 |
8 9
|
syl |
|
11 |
|
simplrl |
|
12 |
11
|
adantr |
|
13 |
|
simprl |
|
14 |
|
metcl |
|
15 |
10 12 13 14
|
syl3anc |
|
16 |
|
simplrr |
|
17 |
16
|
adantr |
|
18 |
|
simprr |
|
19 |
|
metcl |
|
20 |
10 17 18 19
|
syl3anc |
|
21 |
|
rpre |
|
22 |
21
|
ad2antlr |
|
23 |
|
lt2halves |
|
24 |
15 20 22 23
|
syl3anc |
|
25 |
|
eqid |
|
26 |
4 25
|
nvmcl |
|
27 |
8 12 13 26
|
syl3anc |
|
28 |
4 25
|
nvmcl |
|
29 |
8 17 18 28
|
syl3anc |
|
30 |
|
eqid |
|
31 |
4 3 30
|
nvtri |
|
32 |
8 27 29 31
|
syl3anc |
|
33 |
4 3
|
nvgcl |
|
34 |
8 12 17 33
|
syl3anc |
|
35 |
4 3
|
nvgcl |
|
36 |
8 13 18 35
|
syl3anc |
|
37 |
4 25 30 1
|
imsdval |
|
38 |
8 34 36 37
|
syl3anc |
|
39 |
4 3 25
|
nvaddsub4 |
|
40 |
8 12 17 13 18 39
|
syl122anc |
|
41 |
40
|
fveq2d |
|
42 |
38 41
|
eqtrd |
|
43 |
4 25 30 1
|
imsdval |
|
44 |
8 12 13 43
|
syl3anc |
|
45 |
4 25 30 1
|
imsdval |
|
46 |
8 17 18 45
|
syl3anc |
|
47 |
44 46
|
oveq12d |
|
48 |
32 42 47
|
3brtr4d |
|
49 |
|
metcl |
|
50 |
10 34 36 49
|
syl3anc |
|
51 |
15 20
|
readdcld |
|
52 |
|
lelttr |
|
53 |
50 51 22 52
|
syl3anc |
|
54 |
48 53
|
mpand |
|
55 |
24 54
|
syld |
|
56 |
55
|
ralrimivva |
|
57 |
|
breq2 |
|
58 |
|
breq2 |
|
59 |
57 58
|
anbi12d |
|
60 |
59
|
imbi1d |
|
61 |
60
|
2ralbidv |
|
62 |
61
|
rspcev |
|
63 |
7 56 62
|
syl2anc |
|
64 |
63
|
ralrimiva |
|
65 |
64
|
ralrimivva |
|
66 |
4 1
|
imsxmet |
|
67 |
2 2 2
|
txmetcn |
|
68 |
66 66 66 67
|
syl3anc |
|
69 |
5 65 68
|
mpbir2and |
|