Metamath Proof Explorer


Theorem vc0

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vc0.1 G = 1 st W
vc0.2 S = 2 nd W
vc0.3 X = ran G
vc0.4 Z = GId G
Assertion vc0 W CVec OLD A X 0 S A = Z

Proof

Step Hyp Ref Expression
1 vc0.1 G = 1 st W
2 vc0.2 S = 2 nd W
3 vc0.3 X = ran G
4 vc0.4 Z = GId G
5 1 3 4 vc0rid W CVec OLD A X A G Z = A
6 1p0e1 1 + 0 = 1
7 6 oveq1i 1 + 0 S A = 1 S A
8 0cn 0
9 ax-1cn 1
10 1 2 3 vcdir W CVec OLD 1 0 A X 1 + 0 S A = 1 S A G 0 S A
11 9 10 mp3anr1 W CVec OLD 0 A X 1 + 0 S A = 1 S A G 0 S A
12 8 11 mpanr1 W CVec OLD A X 1 + 0 S A = 1 S A G 0 S A
13 1 2 3 vcidOLD W CVec OLD A X 1 S A = A
14 7 12 13 3eqtr3a W CVec OLD A X 1 S A G 0 S A = A
15 13 oveq1d W CVec OLD A X 1 S A G 0 S A = A G 0 S A
16 5 14 15 3eqtr2rd W CVec OLD A X A G 0 S A = A G Z
17 1 2 3 vccl W CVec OLD 0 A X 0 S A X
18 8 17 mp3an2 W CVec OLD A X 0 S A X
19 1 3 4 vczcl W CVec OLD Z X
20 19 adantr W CVec OLD A X Z X
21 simpr W CVec OLD A X A X
22 18 20 21 3jca W CVec OLD A X 0 S A X Z X A X
23 1 3 vclcan W CVec OLD 0 S A X Z X A X A G 0 S A = A G Z 0 S A = Z
24 22 23 syldan W CVec OLD A X A G 0 S A = A G Z 0 S A = Z
25 16 24 mpbid W CVec OLD A X 0 S A = Z