Metamath Proof Explorer


Theorem vcass

Description: Associative law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vciOLD.1 G = 1 st W
vciOLD.2 S = 2 nd W
vciOLD.3 X = ran G
Assertion vcass W CVec OLD A B C X A B S C = A S B S C

Proof

Step Hyp Ref Expression
1 vciOLD.1 G = 1 st W
2 vciOLD.2 S = 2 nd W
3 vciOLD.3 X = ran G
4 1 2 3 vciOLD W CVec OLD G AbelOp S : × X X x X 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x
5 simpr y + z S x = y S x G z S x y z S x = y S z S x y z S x = y S z S x
6 5 ralimi z y + z S x = y S x G z S x y z S x = y S z S x z y z S x = y S z S x
7 6 adantl z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x z y z S x = y S z S x
8 7 ralimi y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x y z y z S x = y S z S x
9 8 adantl 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x y z y z S x = y S z S x
10 9 ralimi x X 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x x X y z y z S x = y S z S x
11 10 3ad2ant3 G AbelOp S : × X X x X 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x x X y z y z S x = y S z S x
12 4 11 syl W CVec OLD x X y z y z S x = y S z S x
13 oveq2 x = C y z S x = y z S C
14 oveq2 x = C z S x = z S C
15 14 oveq2d x = C y S z S x = y S z S C
16 13 15 eqeq12d x = C y z S x = y S z S x y z S C = y S z S C
17 oveq1 y = A y z = A z
18 17 oveq1d y = A y z S C = A z S C
19 oveq1 y = A y S z S C = A S z S C
20 18 19 eqeq12d y = A y z S C = y S z S C A z S C = A S z S C
21 oveq2 z = B A z = A B
22 21 oveq1d z = B A z S C = A B S C
23 oveq1 z = B z S C = B S C
24 23 oveq2d z = B A S z S C = A S B S C
25 22 24 eqeq12d z = B A z S C = A S z S C A B S C = A S B S C
26 16 20 25 rspc3v C X A B x X y z y z S x = y S z S x A B S C = A S B S C
27 12 26 syl5 C X A B W CVec OLD A B S C = A S B S C
28 27 3coml A B C X W CVec OLD A B S C = A S B S C
29 28 impcom W CVec OLD A B C X A B S C = A S B S C