Step |
Hyp |
Ref |
Expression |
1 |
|
vciOLD.1 |
|
2 |
|
vciOLD.2 |
|
3 |
|
vciOLD.3 |
|
4 |
1
|
eqeq2i |
|
5 |
|
eleq1 |
|
6 |
|
rneq |
|
7 |
6 3
|
eqtr4di |
|
8 |
|
xpeq2 |
|
9 |
8
|
feq2d |
|
10 |
|
feq3 |
|
11 |
9 10
|
bitrd |
|
12 |
7 11
|
syl |
|
13 |
|
oveq |
|
14 |
13
|
oveq2d |
|
15 |
|
oveq |
|
16 |
14 15
|
eqeq12d |
|
17 |
7 16
|
raleqbidv |
|
18 |
|
oveq |
|
19 |
18
|
eqeq2d |
|
20 |
19
|
anbi1d |
|
21 |
20
|
ralbidv |
|
22 |
17 21
|
anbi12d |
|
23 |
22
|
ralbidv |
|
24 |
23
|
anbi2d |
|
25 |
7 24
|
raleqbidv |
|
26 |
5 12 25
|
3anbi123d |
|
27 |
4 26
|
sylbir |
|
28 |
2
|
eqeq2i |
|
29 |
|
feq1 |
|
30 |
|
oveq |
|
31 |
30
|
eqeq1d |
|
32 |
|
oveq |
|
33 |
|
oveq |
|
34 |
|
oveq |
|
35 |
33 34
|
oveq12d |
|
36 |
32 35
|
eqeq12d |
|
37 |
36
|
ralbidv |
|
38 |
|
oveq |
|
39 |
|
oveq |
|
40 |
33 39
|
oveq12d |
|
41 |
38 40
|
eqeq12d |
|
42 |
|
oveq |
|
43 |
39
|
oveq2d |
|
44 |
|
oveq |
|
45 |
43 44
|
eqtrd |
|
46 |
42 45
|
eqeq12d |
|
47 |
41 46
|
anbi12d |
|
48 |
47
|
ralbidv |
|
49 |
37 48
|
anbi12d |
|
50 |
49
|
ralbidv |
|
51 |
31 50
|
anbi12d |
|
52 |
51
|
ralbidv |
|
53 |
29 52
|
3anbi23d |
|
54 |
28 53
|
sylbir |
|
55 |
27 54
|
elopabi |
|
56 |
|
df-vc |
|
57 |
55 56
|
eleq2s |
|