| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vciOLD.1 |
|
| 2 |
|
vciOLD.2 |
|
| 3 |
|
vciOLD.3 |
|
| 4 |
1
|
eqeq2i |
|
| 5 |
|
eleq1 |
|
| 6 |
|
rneq |
|
| 7 |
6 3
|
eqtr4di |
|
| 8 |
|
xpeq2 |
|
| 9 |
8
|
feq2d |
|
| 10 |
|
feq3 |
|
| 11 |
9 10
|
bitrd |
|
| 12 |
7 11
|
syl |
|
| 13 |
|
oveq |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
oveq |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
7 16
|
raleqbidv |
|
| 18 |
|
oveq |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
19
|
anbi1d |
|
| 21 |
20
|
ralbidv |
|
| 22 |
17 21
|
anbi12d |
|
| 23 |
22
|
ralbidv |
|
| 24 |
23
|
anbi2d |
|
| 25 |
7 24
|
raleqbidv |
|
| 26 |
5 12 25
|
3anbi123d |
|
| 27 |
4 26
|
sylbir |
|
| 28 |
2
|
eqeq2i |
|
| 29 |
|
feq1 |
|
| 30 |
|
oveq |
|
| 31 |
30
|
eqeq1d |
|
| 32 |
|
oveq |
|
| 33 |
|
oveq |
|
| 34 |
|
oveq |
|
| 35 |
33 34
|
oveq12d |
|
| 36 |
32 35
|
eqeq12d |
|
| 37 |
36
|
ralbidv |
|
| 38 |
|
oveq |
|
| 39 |
|
oveq |
|
| 40 |
33 39
|
oveq12d |
|
| 41 |
38 40
|
eqeq12d |
|
| 42 |
|
oveq |
|
| 43 |
39
|
oveq2d |
|
| 44 |
|
oveq |
|
| 45 |
43 44
|
eqtrd |
|
| 46 |
42 45
|
eqeq12d |
|
| 47 |
41 46
|
anbi12d |
|
| 48 |
47
|
ralbidv |
|
| 49 |
37 48
|
anbi12d |
|
| 50 |
49
|
ralbidv |
|
| 51 |
31 50
|
anbi12d |
|
| 52 |
51
|
ralbidv |
|
| 53 |
29 52
|
3anbi23d |
|
| 54 |
28 53
|
sylbir |
|
| 55 |
27 54
|
elopabi |
|
| 56 |
|
df-vc |
|
| 57 |
55 56
|
eleq2s |
|