Metamath Proof Explorer


Theorem vcidOLD

Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) Obsolete theorem, use clmvs1 together with cvsclm instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses vciOLD.1 G = 1 st W
vciOLD.2 S = 2 nd W
vciOLD.3 X = ran G
Assertion vcidOLD W CVec OLD A X 1 S A = A

Proof

Step Hyp Ref Expression
1 vciOLD.1 G = 1 st W
2 vciOLD.2 S = 2 nd W
3 vciOLD.3 X = ran G
4 1 2 3 vciOLD W CVec OLD G AbelOp S : × X X x X 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x
5 simpl 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x 1 S x = x
6 5 ralimi x X 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x x X 1 S x = x
7 6 3ad2ant3 G AbelOp S : × X X x X 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x x X 1 S x = x
8 4 7 syl W CVec OLD x X 1 S x = x
9 oveq2 x = A 1 S x = 1 S A
10 id x = A x = A
11 9 10 eqeq12d x = A 1 S x = x 1 S A = A
12 11 rspccva x X 1 S x = x A X 1 S A = A
13 8 12 sylan W CVec OLD A X 1 S A = A