Metamath Proof Explorer


Theorem vcm

Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 25-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vcm.1 G = 1 st W
vcm.2 S = 2 nd W
vcm.3 X = ran G
vcm.4 M = inv G
Assertion vcm W CVec OLD A X -1 S A = M A

Proof

Step Hyp Ref Expression
1 vcm.1 G = 1 st W
2 vcm.2 S = 2 nd W
3 vcm.3 X = ran G
4 vcm.4 M = inv G
5 1 vcgrp W CVec OLD G GrpOp
6 5 adantr W CVec OLD A X G GrpOp
7 neg1cn 1
8 1 2 3 vccl W CVec OLD 1 A X -1 S A X
9 7 8 mp3an2 W CVec OLD A X -1 S A X
10 eqid GId G = GId G
11 3 10 grporid G GrpOp -1 S A X -1 S A G GId G = -1 S A
12 6 9 11 syl2anc W CVec OLD A X -1 S A G GId G = -1 S A
13 simpr W CVec OLD A X A X
14 3 4 grpoinvcl G GrpOp A X M A X
15 5 14 sylan W CVec OLD A X M A X
16 3 grpoass G GrpOp -1 S A X A X M A X -1 S A G A G M A = -1 S A G A G M A
17 6 9 13 15 16 syl13anc W CVec OLD A X -1 S A G A G M A = -1 S A G A G M A
18 1 2 3 vcidOLD W CVec OLD A X 1 S A = A
19 18 oveq2d W CVec OLD A X -1 S A G 1 S A = -1 S A G A
20 ax-1cn 1
21 1pneg1e0 1 + -1 = 0
22 20 7 21 addcomli - 1 + 1 = 0
23 22 oveq1i - 1 + 1 S A = 0 S A
24 1 2 3 vcdir W CVec OLD 1 1 A X - 1 + 1 S A = -1 S A G 1 S A
25 7 24 mp3anr1 W CVec OLD 1 A X - 1 + 1 S A = -1 S A G 1 S A
26 20 25 mpanr1 W CVec OLD A X - 1 + 1 S A = -1 S A G 1 S A
27 1 2 3 10 vc0 W CVec OLD A X 0 S A = GId G
28 23 26 27 3eqtr3a W CVec OLD A X -1 S A G 1 S A = GId G
29 19 28 eqtr3d W CVec OLD A X -1 S A G A = GId G
30 29 oveq1d W CVec OLD A X -1 S A G A G M A = GId G G M A
31 17 30 eqtr3d W CVec OLD A X -1 S A G A G M A = GId G G M A
32 3 10 4 grporinv G GrpOp A X A G M A = GId G
33 5 32 sylan W CVec OLD A X A G M A = GId G
34 33 oveq2d W CVec OLD A X -1 S A G A G M A = -1 S A G GId G
35 31 34 eqtr3d W CVec OLD A X GId G G M A = -1 S A G GId G
36 3 10 grpolid G GrpOp M A X GId G G M A = M A
37 6 15 36 syl2anc W CVec OLD A X GId G G M A = M A
38 35 37 eqtr3d W CVec OLD A X -1 S A G GId G = M A
39 12 38 eqtr3d W CVec OLD A X -1 S A = M A