Metamath Proof Explorer


Theorem vdegp1ci

Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { X , U } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)

Ref Expression
Hypotheses vdegp1ai.vg V=VtxG
vdegp1ai.u UV
vdegp1ai.i I=iEdgG
vdegp1ai.w IWordx𝒫V|x2
vdegp1ai.d VtxDegGU=P
vdegp1ai.vf VtxF=V
vdegp1bi.x XV
vdegp1bi.xu XU
vdegp1ci.f iEdgF=I++⟨“XU”⟩
Assertion vdegp1ci VtxDegFU=P+1

Proof

Step Hyp Ref Expression
1 vdegp1ai.vg V=VtxG
2 vdegp1ai.u UV
3 vdegp1ai.i I=iEdgG
4 vdegp1ai.w IWordx𝒫V|x2
5 vdegp1ai.d VtxDegGU=P
6 vdegp1ai.vf VtxF=V
7 vdegp1bi.x XV
8 vdegp1bi.xu XU
9 vdegp1ci.f iEdgF=I++⟨“XU”⟩
10 prcom XU=UX
11 s1eq XU=UX⟨“XU”⟩=⟨“UX”⟩
12 10 11 ax-mp ⟨“XU”⟩=⟨“UX”⟩
13 12 oveq2i I++⟨“XU”⟩=I++⟨“UX”⟩
14 9 13 eqtri iEdgF=I++⟨“UX”⟩
15 1 2 3 4 5 6 7 8 14 vdegp1bi VtxDegFU=P+1