Metamath Proof Explorer


Theorem vdgn0frgrv2

Description: A vertex in a friendship graph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v V = Vtx G
Assertion vdgn0frgrv2 G FriendGraph N V 1 < V VtxDeg G N 0

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v V = Vtx G
2 frgrconngr G FriendGraph G ConnGraph
3 frgrusgr G FriendGraph G USGraph
4 usgrumgr G USGraph G UMGraph
5 3 4 syl G FriendGraph G UMGraph
6 1 vdn0conngrumgrv2 G ConnGraph G UMGraph N V 1 < V VtxDeg G N 0
7 6 ex G ConnGraph G UMGraph N V 1 < V VtxDeg G N 0
8 2 5 7 syl2anc G FriendGraph N V 1 < V VtxDeg G N 0
9 8 expdimp G FriendGraph N V 1 < V VtxDeg G N 0