Metamath Proof Explorer


Theorem vdgn1frgrv2

Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in MertziosUnger p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v V = Vtx G
Assertion vdgn1frgrv2 G FriendGraph N V 1 < V VtxDeg G N 1

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v V = Vtx G
2 frgrusgr G FriendGraph G USGraph
3 2 anim1i G FriendGraph N V G USGraph N V
4 3 adantr G FriendGraph N V 1 < V G USGraph N V
5 eqid iEdg G = iEdg G
6 eqid dom iEdg G = dom iEdg G
7 eqid VtxDeg G = VtxDeg G
8 1 5 6 7 vtxdusgrval G USGraph N V VtxDeg G N = x dom iEdg G | N iEdg G x
9 4 8 syl G FriendGraph N V 1 < V VtxDeg G N = x dom iEdg G | N iEdg G x
10 eqid Edg G = Edg G
11 1 10 3cyclfrgrrn2 G FriendGraph 1 < V a V b V c V b c a b Edg G b c Edg G c a Edg G
12 11 adantlr G FriendGraph N V 1 < V a V b V c V b c a b Edg G b c Edg G c a Edg G
13 preq1 a = N a b = N b
14 13 eleq1d a = N a b Edg G N b Edg G
15 preq2 a = N c a = c N
16 15 eleq1d a = N c a Edg G c N Edg G
17 14 16 3anbi13d a = N a b Edg G b c Edg G c a Edg G N b Edg G b c Edg G c N Edg G
18 17 anbi2d a = N b c a b Edg G b c Edg G c a Edg G b c N b Edg G b c Edg G c N Edg G
19 18 2rexbidv a = N b V c V b c a b Edg G b c Edg G c a Edg G b V c V b c N b Edg G b c Edg G c N Edg G
20 19 rspcva N V a V b V c V b c a b Edg G b c Edg G c a Edg G b V c V b c N b Edg G b c Edg G c N Edg G
21 2 adantl b c N b Edg G b c Edg G c N Edg G N V G FriendGraph G USGraph
22 simplll b c N b Edg G b c Edg G c N Edg G N V G FriendGraph b c
23 3simpb N b Edg G b c Edg G c N Edg G N b Edg G c N Edg G
24 23 ad3antlr b c N b Edg G b c Edg G c N Edg G N V G FriendGraph N b Edg G c N Edg G
25 5 10 usgr2edg1 G USGraph b c N b Edg G c N Edg G ¬ ∃! x dom iEdg G N iEdg G x
26 21 22 24 25 syl21anc b c N b Edg G b c Edg G c N Edg G N V G FriendGraph ¬ ∃! x dom iEdg G N iEdg G x
27 26 a1d b c N b Edg G b c Edg G c N Edg G N V G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
28 27 ex b c N b Edg G b c Edg G c N Edg G N V G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
29 28 ex b c N b Edg G b c Edg G c N Edg G N V G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
30 29 a1i b V c V b c N b Edg G b c Edg G c N Edg G N V G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
31 30 rexlimivv b V c V b c N b Edg G b c Edg G c N Edg G N V G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
32 20 31 syl N V a V b V c V b c a b Edg G b c Edg G c a Edg G N V G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
33 32 ex N V a V b V c V b c a b Edg G b c Edg G c a Edg G N V G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
34 33 pm2.43a N V a V b V c V b c a b Edg G b c Edg G c a Edg G G FriendGraph 1 < V ¬ ∃! x dom iEdg G N iEdg G x
35 34 com24 N V 1 < V G FriendGraph a V b V c V b c a b Edg G b c Edg G c a Edg G ¬ ∃! x dom iEdg G N iEdg G x
36 35 com3r G FriendGraph N V 1 < V a V b V c V b c a b Edg G b c Edg G c a Edg G ¬ ∃! x dom iEdg G N iEdg G x
37 36 imp31 G FriendGraph N V 1 < V a V b V c V b c a b Edg G b c Edg G c a Edg G ¬ ∃! x dom iEdg G N iEdg G x
38 12 37 mpd G FriendGraph N V 1 < V ¬ ∃! x dom iEdg G N iEdg G x
39 fvex iEdg G V
40 39 dmex dom iEdg G V
41 40 a1i G FriendGraph N V 1 < V dom iEdg G V
42 rabexg dom iEdg G V x dom iEdg G | N iEdg G x V
43 hash1snb x dom iEdg G | N iEdg G x V x dom iEdg G | N iEdg G x = 1 i x dom iEdg G | N iEdg G x = i
44 41 42 43 3syl G FriendGraph N V 1 < V x dom iEdg G | N iEdg G x = 1 i x dom iEdg G | N iEdg G x = i
45 reusn ∃! x dom iEdg G N iEdg G x i x dom iEdg G | N iEdg G x = i
46 44 45 bitr4di G FriendGraph N V 1 < V x dom iEdg G | N iEdg G x = 1 ∃! x dom iEdg G N iEdg G x
47 46 necon3abid G FriendGraph N V 1 < V x dom iEdg G | N iEdg G x 1 ¬ ∃! x dom iEdg G N iEdg G x
48 38 47 mpbird G FriendGraph N V 1 < V x dom iEdg G | N iEdg G x 1
49 9 48 eqnetrd G FriendGraph N V 1 < V VtxDeg G N 1
50 49 ex G FriendGraph N V 1 < V VtxDeg G N 1