Metamath Proof Explorer


Theorem vdgn1frgrv3

Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in MertziosUnger p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 4-Sep-2018) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v V = Vtx G
Assertion vdgn1frgrv3 G FriendGraph 1 < V v V VtxDeg G v 1

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v V = Vtx G
2 1 vdgn1frgrv2 G FriendGraph v V 1 < V VtxDeg G v 1
3 2 impancom G FriendGraph 1 < V v V VtxDeg G v 1
4 3 ralrimiv G FriendGraph 1 < V v V VtxDeg G v 1