Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
vdif0
Next ⟩
difrab0eq
Metamath Proof Explorer
Ascii
Unicode
Theorem
vdif0
Description:
Universal class equality in terms of empty difference.
(Contributed by
NM
, 17-Sep-2003)
Ref
Expression
Assertion
vdif0
⊢
A
=
V
↔
V
∖
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
vss
⊢
V
⊆
A
↔
A
=
V
2
ssdif0
⊢
V
⊆
A
↔
V
∖
A
=
∅
3
1
2
bitr3i
⊢
A
=
V
↔
V
∖
A
=
∅