Metamath Proof Explorer


Theorem vdumgr0

Description: A vertex in a multigraph has degree 0 if the graph consists of only one vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypothesis vdumgr0.v V = Vtx G
Assertion vdumgr0 G UMGraph N V V = 1 VtxDeg G N = 0

Proof

Step Hyp Ref Expression
1 vdumgr0.v V = Vtx G
2 umgruhgr G UMGraph G UHGraph
3 2 3ad2ant1 G UMGraph N V V = 1 G UHGraph
4 simp3 G UMGraph N V V = 1 V = 1
5 eqid iEdg G = iEdg G
6 1 5 umgrislfupgr G UMGraph G UPGraph iEdg G : dom iEdg G x 𝒫 V | 2 x
7 6 simprbi G UMGraph iEdg G : dom iEdg G x 𝒫 V | 2 x
8 7 3ad2ant1 G UMGraph N V V = 1 iEdg G : dom iEdg G x 𝒫 V | 2 x
9 3 4 8 3jca G UMGraph N V V = 1 G UHGraph V = 1 iEdg G : dom iEdg G x 𝒫 V | 2 x
10 simp2 G UMGraph N V V = 1 N V
11 eqid x 𝒫 V | 2 x = x 𝒫 V | 2 x
12 1 5 11 vtxdlfuhgr1v G UHGraph V = 1 iEdg G : dom iEdg G x 𝒫 V | 2 x N V VtxDeg G N = 0
13 9 10 12 sylc G UMGraph N V V = 1 VtxDeg G N = 0