Metamath Proof Explorer


Theorem vdwlem5

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φ V
vdwlem3.w φ W
vdwlem4.r φ R Fin
vdwlem4.h φ H : 1 W 2 V R
vdwlem4.f F = x 1 V y 1 W H y + W x - 1 + V
vdwlem7.m φ M
vdwlem7.g φ G : 1 W R
vdwlem7.k φ K 2
vdwlem7.a φ A
vdwlem7.d φ D
vdwlem7.s φ A AP K D F -1 G
vdwlem6.b φ B
vdwlem6.e φ E : 1 M
vdwlem6.s φ i 1 M B + E i AP K E i G -1 G B + E i
vdwlem6.j J = i 1 M G B + E i
vdwlem6.r φ ran J = M
vdwlem6.t T = B + W A + V D - 1
vdwlem6.p P = j 1 M + 1 if j = M + 1 0 E j + W D
Assertion vdwlem5 φ T

Proof

Step Hyp Ref Expression
1 vdwlem3.v φ V
2 vdwlem3.w φ W
3 vdwlem4.r φ R Fin
4 vdwlem4.h φ H : 1 W 2 V R
5 vdwlem4.f F = x 1 V y 1 W H y + W x - 1 + V
6 vdwlem7.m φ M
7 vdwlem7.g φ G : 1 W R
8 vdwlem7.k φ K 2
9 vdwlem7.a φ A
10 vdwlem7.d φ D
11 vdwlem7.s φ A AP K D F -1 G
12 vdwlem6.b φ B
13 vdwlem6.e φ E : 1 M
14 vdwlem6.s φ i 1 M B + E i AP K E i G -1 G B + E i
15 vdwlem6.j J = i 1 M G B + E i
16 vdwlem6.r φ ran J = M
17 vdwlem6.t T = B + W A + V D - 1
18 vdwlem6.p P = j 1 M + 1 if j = M + 1 0 E j + W D
19 2 nnnn0d φ W 0
20 1 nncnd φ V
21 10 nncnd φ D
22 20 21 subcld φ V D
23 9 nncnd φ A
24 22 23 npcand φ V D - A + A = V D
25 20 21 23 subsub4d φ V - D - A = V D + A
26 21 23 addcomd φ D + A = A + D
27 26 oveq2d φ V D + A = V A + D
28 25 27 eqtrd φ V - D - A = V A + D
29 cnvimass F -1 G dom F
30 1 2 3 4 5 vdwlem4 φ F : 1 V R 1 W
31 29 30 fssdm φ F -1 G 1 V
32 ssun2 A + D AP K 1 D A A + D AP K 1 D
33 uz2m1nn K 2 K 1
34 8 33 syl φ K 1
35 9 10 nnaddcld φ A + D
36 vdwapid1 K 1 A + D D A + D A + D AP K 1 D
37 34 35 10 36 syl3anc φ A + D A + D AP K 1 D
38 32 37 sseldi φ A + D A A + D AP K 1 D
39 eluz2nn K 2 K
40 8 39 syl φ K
41 40 nncnd φ K
42 ax-1cn 1
43 npcan K 1 K - 1 + 1 = K
44 41 42 43 sylancl φ K - 1 + 1 = K
45 44 fveq2d φ AP K - 1 + 1 = AP K
46 45 oveqd φ A AP K - 1 + 1 D = A AP K D
47 nnm1nn0 K K 1 0
48 40 47 syl φ K 1 0
49 vdwapun K 1 0 A D A AP K - 1 + 1 D = A A + D AP K 1 D
50 48 9 10 49 syl3anc φ A AP K - 1 + 1 D = A A + D AP K 1 D
51 46 50 eqtr3d φ A AP K D = A A + D AP K 1 D
52 38 51 eleqtrrd φ A + D A AP K D
53 11 52 sseldd φ A + D F -1 G
54 31 53 sseldd φ A + D 1 V
55 elfzuz3 A + D 1 V V A + D
56 54 55 syl φ V A + D
57 uznn0sub V A + D V A + D 0
58 56 57 syl φ V A + D 0
59 28 58 eqeltrd φ V - D - A 0
60 nn0nnaddcl V - D - A 0 A V D - A + A
61 59 9 60 syl2anc φ V D - A + A
62 24 61 eqeltrrd φ V D
63 9 62 nnaddcld φ A + V - D
64 nnm1nn0 A + V - D A + V D - 1 0
65 63 64 syl φ A + V D - 1 0
66 19 65 nn0mulcld φ W A + V D - 1 0
67 nnnn0addcl B W A + V D - 1 0 B + W A + V D - 1
68 12 66 67 syl2anc φ B + W A + V D - 1
69 17 68 eqeltrid φ T