Metamath Proof Explorer


Theorem vdwmc2

Description: Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdwmc.1 X V
vdwmc.2 φ K 0
vdwmc.3 φ F : X R
vdwmc2.4 φ A X
Assertion vdwmc2 φ K MonoAP F c R a d m 0 K 1 a + m d F -1 c

Proof

Step Hyp Ref Expression
1 vdwmc.1 X V
2 vdwmc.2 φ K 0
3 vdwmc.3 φ F : X R
4 vdwmc2.4 φ A X
5 1 2 3 vdwmc φ K MonoAP F c a d a AP K d F -1 c
6 vdwapid1 K a d a a AP K d
7 6 ne0d K a d a AP K d
8 7 3expb K a d a AP K d
9 8 adantll φ K a d a AP K d
10 ssn0 a AP K d F -1 c a AP K d F -1 c
11 10 expcom a AP K d a AP K d F -1 c F -1 c
12 9 11 syl φ K a d a AP K d F -1 c F -1 c
13 disjsn R c = ¬ c R
14 3 adantr φ K F : X R
15 fimacnvdisj F : X R R c = F -1 c =
16 15 ex F : X R R c = F -1 c =
17 14 16 syl φ K R c = F -1 c =
18 17 adantr φ K a d R c = F -1 c =
19 13 18 syl5bir φ K a d ¬ c R F -1 c =
20 19 necon1ad φ K a d F -1 c c R
21 12 20 syld φ K a d a AP K d F -1 c c R
22 21 rexlimdvva φ K a d a AP K d F -1 c c R
23 22 pm4.71rd φ K a d a AP K d F -1 c c R a d a AP K d F -1 c
24 23 exbidv φ K c a d a AP K d F -1 c c c R a d a AP K d F -1 c
25 df-rex c R a d a AP K d F -1 c c c R a d a AP K d F -1 c
26 24 25 syl6bbr φ K c a d a AP K d F -1 c c R a d a AP K d F -1 c
27 3 4 ffvelrnd φ F A R
28 27 ne0d φ R
29 1nn 1
30 29 ne0ii
31 simpllr φ K = 0 a d K = 0
32 31 fveq2d φ K = 0 a d AP K = AP 0
33 32 oveqd φ K = 0 a d a AP K d = a AP 0 d
34 vdwap0 a d a AP 0 d =
35 34 adantll φ K = 0 a d a AP 0 d =
36 33 35 eqtrd φ K = 0 a d a AP K d =
37 0ss F -1 c
38 36 37 eqsstrdi φ K = 0 a d a AP K d F -1 c
39 38 ralrimiva φ K = 0 a d a AP K d F -1 c
40 r19.2z d a AP K d F -1 c d a AP K d F -1 c
41 30 39 40 sylancr φ K = 0 a d a AP K d F -1 c
42 41 ralrimiva φ K = 0 a d a AP K d F -1 c
43 r19.2z a d a AP K d F -1 c a d a AP K d F -1 c
44 30 42 43 sylancr φ K = 0 a d a AP K d F -1 c
45 44 ralrimivw φ K = 0 c R a d a AP K d F -1 c
46 r19.2z R c R a d a AP K d F -1 c c R a d a AP K d F -1 c
47 28 45 46 syl2an2r φ K = 0 c R a d a AP K d F -1 c
48 rexex c R a d a AP K d F -1 c c a d a AP K d F -1 c
49 47 48 syl φ K = 0 c a d a AP K d F -1 c
50 49 47 2thd φ K = 0 c a d a AP K d F -1 c c R a d a AP K d F -1 c
51 elnn0 K 0 K K = 0
52 2 51 sylib φ K K = 0
53 26 50 52 mpjaodan φ c a d a AP K d F -1 c c R a d a AP K d F -1 c
54 vdwapval K 0 a d x a AP K d m 0 K 1 x = a + m d
55 54 3expb K 0 a d x a AP K d m 0 K 1 x = a + m d
56 2 55 sylan φ a d x a AP K d m 0 K 1 x = a + m d
57 56 imbi1d φ a d x a AP K d x F -1 c m 0 K 1 x = a + m d x F -1 c
58 57 albidv φ a d x x a AP K d x F -1 c x m 0 K 1 x = a + m d x F -1 c
59 dfss2 a AP K d F -1 c x x a AP K d x F -1 c
60 ralcom4 m 0 K 1 x x = a + m d x F -1 c x m 0 K 1 x = a + m d x F -1 c
61 ovex a + m d V
62 eleq1 x = a + m d x F -1 c a + m d F -1 c
63 61 62 ceqsalv x x = a + m d x F -1 c a + m d F -1 c
64 63 ralbii m 0 K 1 x x = a + m d x F -1 c m 0 K 1 a + m d F -1 c
65 r19.23v m 0 K 1 x = a + m d x F -1 c m 0 K 1 x = a + m d x F -1 c
66 65 albii x m 0 K 1 x = a + m d x F -1 c x m 0 K 1 x = a + m d x F -1 c
67 60 64 66 3bitr3i m 0 K 1 a + m d F -1 c x m 0 K 1 x = a + m d x F -1 c
68 58 59 67 3bitr4g φ a d a AP K d F -1 c m 0 K 1 a + m d F -1 c
69 68 2rexbidva φ a d a AP K d F -1 c a d m 0 K 1 a + m d F -1 c
70 69 rexbidv φ c R a d a AP K d F -1 c c R a d m 0 K 1 a + m d F -1 c
71 5 53 70 3bitrd φ K MonoAP F c R a d m 0 K 1 a + m d F -1 c