Step |
Hyp |
Ref |
Expression |
1 |
|
2m1e1 |
|
2 |
1
|
a1i |
|
3 |
2
|
eqcomd |
|
4 |
3
|
oveq2d |
|
5 |
|
prmz |
|
6 |
5
|
zcnd |
|
7 |
|
2cnd |
|
8 |
|
1cnd |
|
9 |
6 7 8
|
subsubd |
|
10 |
4 9
|
eqtrd |
|
11 |
10
|
3ad2ant1 |
|
12 |
11
|
oveq2d |
|
13 |
|
zcn |
|
14 |
13
|
3ad2ant2 |
|
15 |
|
prmm2nn0 |
|
16 |
15
|
3ad2ant1 |
|
17 |
14 16
|
expp1d |
|
18 |
12 17
|
eqtrd |
|
19 |
18
|
oveq1d |
|
20 |
15
|
anim1i |
|
21 |
20
|
ancomd |
|
22 |
|
zexpcl |
|
23 |
21 22
|
syl |
|
24 |
23
|
zred |
|
25 |
24
|
3adant3 |
|
26 |
|
simp2 |
|
27 |
|
prmnn |
|
28 |
27
|
nnrpd |
|
29 |
28
|
3ad2ant1 |
|
30 |
|
modmulmod |
|
31 |
25 26 29 30
|
syl3anc |
|
32 |
|
zre |
|
33 |
32
|
adantl |
|
34 |
15
|
adantr |
|
35 |
33 34
|
reexpcld |
|
36 |
28
|
adantr |
|
37 |
35 36
|
modcld |
|
38 |
37
|
recnd |
|
39 |
13
|
adantl |
|
40 |
38 39
|
mulcomd |
|
41 |
40
|
3adant3 |
|
42 |
41
|
oveq1d |
|
43 |
19 31 42
|
3eqtr2d |
|
44 |
|
eqid |
|
45 |
44
|
modprminv |
|
46 |
45
|
simprd |
|
47 |
43 46
|
eqtrd |
|