Metamath Proof Explorer


Theorem vieta1lem1

Description: Lemma for vieta1 . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses vieta1.1 A = coeff F
vieta1.2 N = deg F
vieta1.3 R = F -1 0
vieta1.4 φ F Poly S
vieta1.5 φ R = N
vieta1lem.6 φ D
vieta1lem.7 φ D + 1 = N
vieta1lem.8 φ f Poly D = deg f f -1 0 = deg f x f -1 0 x = coeff f deg f 1 coeff f deg f
vieta1lem.9 Q = F quot X p f × z
Assertion vieta1lem1 φ z R Q Poly D = deg Q

Proof

Step Hyp Ref Expression
1 vieta1.1 A = coeff F
2 vieta1.2 N = deg F
3 vieta1.3 R = F -1 0
4 vieta1.4 φ F Poly S
5 vieta1.5 φ R = N
6 vieta1lem.6 φ D
7 vieta1lem.7 φ D + 1 = N
8 vieta1lem.8 φ f Poly D = deg f f -1 0 = deg f x f -1 0 x = coeff f deg f 1 coeff f deg f
9 vieta1lem.9 Q = F quot X p f × z
10 plyssc Poly S Poly
11 4 adantr φ z R F Poly S
12 10 11 sselid φ z R F Poly
13 cnvimass F -1 0 dom F
14 3 13 eqsstri R dom F
15 plyf F Poly S F :
16 4 15 syl φ F :
17 14 16 fssdm φ R
18 17 sselda φ z R z
19 eqid X p f × z = X p f × z
20 19 plyremlem z X p f × z Poly deg X p f × z = 1 X p f × z -1 0 = z
21 18 20 syl φ z R X p f × z Poly deg X p f × z = 1 X p f × z -1 0 = z
22 21 simp1d φ z R X p f × z Poly
23 21 simp2d φ z R deg X p f × z = 1
24 ax-1ne0 1 0
25 24 a1i φ z R 1 0
26 23 25 eqnetrd φ z R deg X p f × z 0
27 fveq2 X p f × z = 0 𝑝 deg X p f × z = deg 0 𝑝
28 dgr0 deg 0 𝑝 = 0
29 27 28 eqtrdi X p f × z = 0 𝑝 deg X p f × z = 0
30 29 necon3i deg X p f × z 0 X p f × z 0 𝑝
31 26 30 syl φ z R X p f × z 0 𝑝
32 quotcl2 F Poly X p f × z Poly X p f × z 0 𝑝 F quot X p f × z Poly
33 12 22 31 32 syl3anc φ z R F quot X p f × z Poly
34 9 33 eqeltrid φ z R Q Poly
35 1cnd φ z R 1
36 6 nncnd φ D
37 36 adantr φ z R D
38 dgrcl Q Poly deg Q 0
39 34 38 syl φ z R deg Q 0
40 39 nn0cnd φ z R deg Q
41 ax-1cn 1
42 addcom 1 D 1 + D = D + 1
43 41 37 42 sylancr φ z R 1 + D = D + 1
44 7 2 eqtrdi φ D + 1 = deg F
45 44 adantr φ z R D + 1 = deg F
46 3 eleq2i z R z F -1 0
47 16 ffnd φ F Fn
48 fniniseg F Fn z F -1 0 z F z = 0
49 47 48 syl φ z F -1 0 z F z = 0
50 46 49 syl5bb φ z R z F z = 0
51 50 simplbda φ z R F z = 0
52 19 facth F Poly S z F z = 0 F = X p f × z × f F quot X p f × z
53 11 18 51 52 syl3anc φ z R F = X p f × z × f F quot X p f × z
54 9 oveq2i X p f × z × f Q = X p f × z × f F quot X p f × z
55 53 54 eqtr4di φ z R F = X p f × z × f Q
56 55 fveq2d φ z R deg F = deg X p f × z × f Q
57 6 peano2nnd φ D + 1
58 7 57 eqeltrrd φ N
59 58 nnne0d φ N 0
60 2 59 eqnetrrid φ deg F 0
61 fveq2 F = 0 𝑝 deg F = deg 0 𝑝
62 61 28 eqtrdi F = 0 𝑝 deg F = 0
63 62 necon3i deg F 0 F 0 𝑝
64 60 63 syl φ F 0 𝑝
65 64 adantr φ z R F 0 𝑝
66 55 65 eqnetrrd φ z R X p f × z × f Q 0 𝑝
67 plymul0or X p f × z Poly Q Poly X p f × z × f Q = 0 𝑝 X p f × z = 0 𝑝 Q = 0 𝑝
68 22 34 67 syl2anc φ z R X p f × z × f Q = 0 𝑝 X p f × z = 0 𝑝 Q = 0 𝑝
69 68 necon3abid φ z R X p f × z × f Q 0 𝑝 ¬ X p f × z = 0 𝑝 Q = 0 𝑝
70 66 69 mpbid φ z R ¬ X p f × z = 0 𝑝 Q = 0 𝑝
71 neanior X p f × z 0 𝑝 Q 0 𝑝 ¬ X p f × z = 0 𝑝 Q = 0 𝑝
72 70 71 sylibr φ z R X p f × z 0 𝑝 Q 0 𝑝
73 72 simprd φ z R Q 0 𝑝
74 eqid deg X p f × z = deg X p f × z
75 eqid deg Q = deg Q
76 74 75 dgrmul X p f × z Poly X p f × z 0 𝑝 Q Poly Q 0 𝑝 deg X p f × z × f Q = deg X p f × z + deg Q
77 22 31 34 73 76 syl22anc φ z R deg X p f × z × f Q = deg X p f × z + deg Q
78 45 56 77 3eqtrd φ z R D + 1 = deg X p f × z + deg Q
79 23 oveq1d φ z R deg X p f × z + deg Q = 1 + deg Q
80 43 78 79 3eqtrd φ z R 1 + D = 1 + deg Q
81 35 37 40 80 addcanad φ z R D = deg Q
82 34 81 jca φ z R Q Poly D = deg Q