Metamath Proof Explorer


Theorem viin

Description: Indexed intersection with a universal index class. When A doesn't depend on x , this evaluates to A by 19.3 and abid2 . When A = x , this evaluates to (/) by intiin and intv . (Contributed by NM, 11-Sep-2008)

Ref Expression
Assertion viin x V A = y | x y A

Proof

Step Hyp Ref Expression
1 df-iin x V A = y | x V y A
2 ralv x V y A x y A
3 2 abbii y | x V y A = y | x y A
4 1 3 eqtri x V A = y | x y A