Step |
Hyp |
Ref |
Expression |
1 |
|
vitali.1 |
|
2 |
|
vitali.2 |
|
3 |
|
vitali.3 |
|
4 |
|
vitali.4 |
|
5 |
|
vitali.5 |
|
6 |
|
vitali.6 |
|
7 |
|
vitali.7 |
|
8 |
|
neeq1 |
|
9 |
1
|
vitalilem1 |
|
10 |
|
erdm |
|
11 |
9 10
|
ax-mp |
|
12 |
11
|
eleq2i |
|
13 |
|
ecdmn0 |
|
14 |
12 13
|
bitr3i |
|
15 |
14
|
biimpi |
|
16 |
2 8 15
|
ectocl |
|
17 |
16
|
adantl |
|
18 |
|
sseq1 |
|
19 |
9
|
a1i |
|
20 |
19
|
ecss |
|
21 |
2 18 20
|
ectocl |
|
22 |
21
|
adantl |
|
23 |
22
|
sseld |
|
24 |
17 23
|
embantd |
|
25 |
24
|
ralimdva |
|
26 |
4 25
|
mpd |
|
27 |
|
ffnfv |
|
28 |
3 26 27
|
sylanbrc |
|
29 |
28
|
frnd |
|
30 |
5
|
adantr |
|
31 |
|
f1ocnv |
|
32 |
|
f1of |
|
33 |
30 31 32
|
3syl |
|
34 |
|
simpr |
|
35 |
34 14
|
sylib |
|
36 |
|
neeq1 |
|
37 |
|
fveq2 |
|
38 |
|
id |
|
39 |
37 38
|
eleq12d |
|
40 |
36 39
|
imbi12d |
|
41 |
4
|
adantr |
|
42 |
|
ovex |
|
43 |
|
erex |
|
44 |
9 42 43
|
mp2 |
|
45 |
44
|
ecelqsi |
|
46 |
45
|
adantl |
|
47 |
46 2
|
eleqtrrdi |
|
48 |
40 41 47
|
rspcdva |
|
49 |
35 48
|
mpd |
|
50 |
|
fvex |
|
51 |
|
vex |
|
52 |
50 51
|
elec |
|
53 |
|
oveq12 |
|
54 |
53
|
eleq1d |
|
55 |
54 1
|
brab2a |
|
56 |
52 55
|
bitri |
|
57 |
49 56
|
sylib |
|
58 |
57
|
simprd |
|
59 |
|
elicc01 |
|
60 |
34 59
|
sylib |
|
61 |
60
|
simp1d |
|
62 |
57
|
simpld |
|
63 |
62
|
simprd |
|
64 |
|
elicc01 |
|
65 |
63 64
|
sylib |
|
66 |
65
|
simp1d |
|
67 |
61 66
|
resubcld |
|
68 |
66 61
|
resubcld |
|
69 |
|
1red |
|
70 |
60
|
simp2d |
|
71 |
66 61
|
subge02d |
|
72 |
70 71
|
mpbid |
|
73 |
65
|
simp3d |
|
74 |
68 66 69 72 73
|
letrd |
|
75 |
68 69
|
lenegd |
|
76 |
74 75
|
mpbid |
|
77 |
66
|
recnd |
|
78 |
61
|
recnd |
|
79 |
77 78
|
negsubdi2d |
|
80 |
76 79
|
breqtrd |
|
81 |
65
|
simp2d |
|
82 |
61 66
|
subge02d |
|
83 |
81 82
|
mpbid |
|
84 |
60
|
simp3d |
|
85 |
67 61 69 83 84
|
letrd |
|
86 |
|
neg1rr |
|
87 |
|
1re |
|
88 |
86 87
|
elicc2i |
|
89 |
67 80 85 88
|
syl3anbrc |
|
90 |
58 89
|
elind |
|
91 |
33 90
|
ffvelrnd |
|
92 |
|
oveq1 |
|
93 |
92
|
eleq1d |
|
94 |
|
f1ocnvfv2 |
|
95 |
5 90 94
|
syl2an2r |
|
96 |
95
|
oveq2d |
|
97 |
78 77
|
nncand |
|
98 |
96 97
|
eqtrd |
|
99 |
|
fnfvelrn |
|
100 |
3 47 99
|
syl2an2r |
|
101 |
98 100
|
eqeltrd |
|
102 |
93 61 101
|
elrabd |
|
103 |
|
fveq2 |
|
104 |
103
|
oveq2d |
|
105 |
104
|
eleq1d |
|
106 |
105
|
rabbidv |
|
107 |
|
reex |
|
108 |
107
|
rabex |
|
109 |
106 6 108
|
fvmpt |
|
110 |
91 109
|
syl |
|
111 |
102 110
|
eleqtrrd |
|
112 |
|
fveq2 |
|
113 |
112
|
eliuni |
|
114 |
91 111 113
|
syl2anc |
|
115 |
114
|
ex |
|
116 |
115
|
ssrdv |
|
117 |
|
eliun |
|
118 |
|
fveq2 |
|
119 |
118
|
oveq2d |
|
120 |
119
|
eleq1d |
|
121 |
120
|
rabbidv |
|
122 |
107
|
rabex |
|
123 |
121 6 122
|
fvmpt |
|
124 |
123
|
adantl |
|
125 |
124
|
eleq2d |
|
126 |
125
|
biimpa |
|
127 |
|
oveq1 |
|
128 |
127
|
eleq1d |
|
129 |
128
|
elrab |
|
130 |
126 129
|
sylib |
|
131 |
130
|
simpld |
|
132 |
86
|
a1i |
|
133 |
|
iccssre |
|
134 |
86 87 133
|
mp2an |
|
135 |
|
f1of |
|
136 |
5 135
|
syl |
|
137 |
136
|
ffvelrnda |
|
138 |
137
|
elin2d |
|
139 |
134 138
|
sselid |
|
140 |
139
|
adantr |
|
141 |
138
|
adantr |
|
142 |
86 87
|
elicc2i |
|
143 |
141 142
|
sylib |
|
144 |
143
|
simp2d |
|
145 |
29
|
ad2antrr |
|
146 |
130
|
simprd |
|
147 |
145 146
|
sseldd |
|
148 |
|
elicc01 |
|
149 |
147 148
|
sylib |
|
150 |
149
|
simp2d |
|
151 |
131 140
|
subge0d |
|
152 |
150 151
|
mpbid |
|
153 |
132 140 131 144 152
|
letrd |
|
154 |
|
peano2re |
|
155 |
140 154
|
syl |
|
156 |
|
2re |
|
157 |
156
|
a1i |
|
158 |
149
|
simp3d |
|
159 |
|
1red |
|
160 |
131 140 159
|
lesubadd2d |
|
161 |
158 160
|
mpbid |
|
162 |
143
|
simp3d |
|
163 |
140 159 159 162
|
leadd1dd |
|
164 |
|
df-2 |
|
165 |
163 164
|
breqtrrdi |
|
166 |
131 155 157 161 165
|
letrd |
|
167 |
86 156
|
elicc2i |
|
168 |
131 153 166 167
|
syl3anbrc |
|
169 |
168
|
rexlimdva2 |
|
170 |
117 169
|
syl5bi |
|
171 |
170
|
ssrdv |
|
172 |
29 116 171
|
3jca |
|