Metamath Proof Explorer


Theorem vk15.4j

Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j is vk15.4jVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vk15.4j.1 ¬ x ¬ φ x ψ ¬ χ
vk15.4j.2 x χ ¬ x θ τ
vk15.4j.3 ¬ x τ φ
Assertion vk15.4j ¬ x ¬ θ ¬ x ψ

Proof

Step Hyp Ref Expression
1 vk15.4j.1 ¬ x ¬ φ x ψ ¬ χ
2 vk15.4j.2 x χ ¬ x θ τ
3 vk15.4j.3 ¬ x τ φ
4 exanali x τ ¬ φ ¬ x τ φ
5 3 4 mpbir x τ ¬ φ
6 alex x θ ¬ x ¬ θ
7 6 biimpri ¬ x ¬ θ x θ
8 7 19.21bi ¬ x ¬ θ θ
9 simpl τ ¬ φ τ
10 9 a1i ¬ x ¬ θ τ ¬ φ τ
11 19.8a θ τ x θ τ
12 8 10 11 syl6an ¬ x ¬ θ τ ¬ φ x θ τ
13 notnot x θ τ ¬ ¬ x θ τ
14 12 13 syl6 ¬ x ¬ θ τ ¬ φ ¬ ¬ x θ τ
15 con3 x χ ¬ x θ τ ¬ ¬ x θ τ ¬ x χ
16 2 14 15 mpsylsyld ¬ x ¬ θ τ ¬ φ ¬ x χ
17 hbe1 x ¬ θ x x ¬ θ
18 17 hbn ¬ x ¬ θ x ¬ x ¬ θ
19 hbn1 ¬ x χ x ¬ x χ
20 5 16 18 19 eexinst01 ¬ x ¬ θ ¬ x χ
21 exnal x ¬ χ ¬ x χ
22 20 21 sylibr ¬ x ¬ θ x ¬ χ
23 pm3.13 ¬ x ¬ φ x ψ ¬ χ ¬ x ¬ φ ¬ x ψ ¬ χ
24 1 23 ax-mp ¬ x ¬ φ ¬ x ψ ¬ χ
25 simpr τ ¬ φ ¬ φ
26 25 a1i ¬ x ¬ θ τ ¬ φ ¬ φ
27 19.8a ¬ φ x ¬ φ
28 26 27 syl6 ¬ x ¬ θ τ ¬ φ x ¬ φ
29 hbe1 x ¬ φ x x ¬ φ
30 5 28 18 29 eexinst01 ¬ x ¬ θ x ¬ φ
31 notnot x ¬ φ ¬ ¬ x ¬ φ
32 30 31 syl ¬ x ¬ θ ¬ ¬ x ¬ φ
33 pm2.53 ¬ x ¬ φ ¬ x ψ ¬ χ ¬ ¬ x ¬ φ ¬ x ψ ¬ χ
34 24 32 33 mpsyl ¬ x ¬ θ ¬ x ψ ¬ χ
35 exanali x ψ ¬ χ ¬ x ψ χ
36 35 con5i ¬ x ψ ¬ χ x ψ χ
37 34 36 syl ¬ x ¬ θ x ψ χ
38 37 19.21bi ¬ x ¬ θ ψ χ
39 38 con3d ¬ x ¬ θ ¬ χ ¬ ψ
40 19.8a ¬ ψ x ¬ ψ
41 39 40 syl6 ¬ x ¬ θ ¬ χ x ¬ ψ
42 hbe1 x ¬ ψ x x ¬ ψ
43 22 41 18 42 eexinst11 ¬ x ¬ θ x ¬ ψ
44 exnal x ¬ ψ ¬ x ψ
45 43 44 sylib ¬ x ¬ θ ¬ x ψ