Metamath Proof Explorer


Theorem vma1

Description: The von Mangoldt function at 1 . (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion vma1 Λ 1 = 0

Proof

Step Hyp Ref Expression
1 1red p k 1
2 prmuz2 p p 2
3 2 adantr p k p 2
4 eluz2b2 p 2 p 1 < p
5 3 4 sylib p k p 1 < p
6 5 simpld p k p
7 6 nnred p k p
8 nnnn0 k k 0
9 8 adantl p k k 0
10 7 9 reexpcld p k p k
11 5 simprd p k 1 < p
12 6 nncnd p k p
13 12 exp1d p k p 1 = p
14 6 nnge1d p k 1 p
15 simpr p k k
16 nnuz = 1
17 15 16 eleqtrdi p k k 1
18 7 14 17 leexp2ad p k p 1 p k
19 13 18 eqbrtrrd p k p p k
20 1 7 10 11 19 ltletrd p k 1 < p k
21 1 20 ltned p k 1 p k
22 21 neneqd p k ¬ 1 = p k
23 22 nrexdv p ¬ k 1 = p k
24 23 nrex ¬ p k 1 = p k
25 1nn 1
26 isppw2 1 Λ 1 0 p k 1 = p k
27 25 26 ax-mp Λ 1 0 p k 1 = p k
28 27 necon1bbii ¬ p k 1 = p k Λ 1 = 0
29 24 28 mpbi Λ 1 = 0