Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
vmacl
Next ⟩
vmaf
Metamath Proof Explorer
Ascii
Unicode
Theorem
vmacl
Description:
Closure for the von Mangoldt function.
(Contributed by
Mario Carneiro
, 7-Apr-2016)
Ref
Expression
Assertion
vmacl
⊢
A
∈
ℕ
→
Λ
⁡
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
Λ
⁡
A
=
0
→
Λ
⁡
A
∈
ℝ
↔
0
∈
ℝ
2
isppw2
⊢
A
∈
ℕ
→
Λ
⁡
A
≠
0
↔
∃
p
∈
ℙ
∃
k
∈
ℕ
A
=
p
k
3
vmappw
⊢
p
∈
ℙ
∧
k
∈
ℕ
→
Λ
⁡
p
k
=
log
⁡
p
4
prmnn
⊢
p
∈
ℙ
→
p
∈
ℕ
5
4
nnrpd
⊢
p
∈
ℙ
→
p
∈
ℝ
+
6
5
relogcld
⊢
p
∈
ℙ
→
log
⁡
p
∈
ℝ
7
6
adantr
⊢
p
∈
ℙ
∧
k
∈
ℕ
→
log
⁡
p
∈
ℝ
8
3
7
eqeltrd
⊢
p
∈
ℙ
∧
k
∈
ℕ
→
Λ
⁡
p
k
∈
ℝ
9
fveq2
⊢
A
=
p
k
→
Λ
⁡
A
=
Λ
⁡
p
k
10
9
eleq1d
⊢
A
=
p
k
→
Λ
⁡
A
∈
ℝ
↔
Λ
⁡
p
k
∈
ℝ
11
8
10
syl5ibrcom
⊢
p
∈
ℙ
∧
k
∈
ℕ
→
A
=
p
k
→
Λ
⁡
A
∈
ℝ
12
11
rexlimivv
⊢
∃
p
∈
ℙ
∃
k
∈
ℕ
A
=
p
k
→
Λ
⁡
A
∈
ℝ
13
2
12
syl6bi
⊢
A
∈
ℕ
→
Λ
⁡
A
≠
0
→
Λ
⁡
A
∈
ℝ
14
13
imp
⊢
A
∈
ℕ
∧
Λ
⁡
A
≠
0
→
Λ
⁡
A
∈
ℝ
15
0red
⊢
A
∈
ℕ
→
0
∈
ℝ
16
1
14
15
pm2.61ne
⊢
A
∈
ℕ
→
Λ
⁡
A
∈
ℝ