Metamath Proof Explorer


Theorem vmadivsum

Description: The sum of the von Mangoldt function over n is asymptotic to log x + O(1) . Equation 9.2.13 of Shapiro, p. 331. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Assertion vmadivsum x + n = 1 x Λ n n log x 𝑂1

Proof

Step Hyp Ref Expression
1 reex V
2 rpssre +
3 1 2 ssexi + V
4 3 a1i + V
5 ovexd x + n = 1 x Λ n n log x ! x V
6 ovexd x + log x log x ! x V
7 eqidd x + n = 1 x Λ n n log x ! x = x + n = 1 x Λ n n log x ! x
8 eqidd x + log x log x ! x = x + log x log x ! x
9 4 5 6 7 8 offval2 x + n = 1 x Λ n n log x ! x f x + log x log x ! x = x + n = 1 x Λ n n - log x ! x - log x log x ! x
10 9 mptru x + n = 1 x Λ n n log x ! x f x + log x log x ! x = x + n = 1 x Λ n n - log x ! x - log x log x ! x
11 fzfid x + 1 x Fin
12 elfznn n 1 x n
13 12 adantl x + n 1 x n
14 vmacl n Λ n
15 13 14 syl x + n 1 x Λ n
16 15 13 nndivred x + n 1 x Λ n n
17 11 16 fsumrecl x + n = 1 x Λ n n
18 17 recnd x + n = 1 x Λ n n
19 relogcl x + log x
20 19 recnd x + log x
21 rprege0 x + x 0 x
22 flge0nn0 x 0 x x 0
23 faccl x 0 x !
24 21 22 23 3syl x + x !
25 24 nnrpd x + x ! +
26 25 relogcld x + log x !
27 rerpdivcl log x ! x + log x ! x
28 26 27 mpancom x + log x ! x
29 28 recnd x + log x ! x
30 18 20 29 nnncan2d x + n = 1 x Λ n n - log x ! x - log x log x ! x = n = 1 x Λ n n log x
31 30 mpteq2ia x + n = 1 x Λ n n - log x ! x - log x log x ! x = x + n = 1 x Λ n n log x
32 10 31 eqtri x + n = 1 x Λ n n log x ! x f x + log x log x ! x = x + n = 1 x Λ n n log x
33 1red 1
34 chpo1ub x + ψ x x 𝑂1
35 34 a1i x + ψ x x 𝑂1
36 rpre x + x
37 chpcl x ψ x
38 36 37 syl x + ψ x
39 rerpdivcl ψ x x + ψ x x
40 38 39 mpancom x + ψ x x
41 40 recnd x + ψ x x
42 41 adantl x + ψ x x
43 18 29 subcld x + n = 1 x Λ n n log x ! x
44 43 adantl x + n = 1 x Λ n n log x ! x
45 36 adantr x + n 1 x x
46 16 45 remulcld x + n 1 x Λ n n x
47 nndivre x n x n
48 36 12 47 syl2an x + n 1 x x n
49 reflcl x n x n
50 48 49 syl x + n 1 x x n
51 15 50 remulcld x + n 1 x Λ n x n
52 46 51 resubcld x + n 1 x Λ n n x Λ n x n
53 48 50 resubcld x + n 1 x x n x n
54 1red x + n 1 x 1
55 vmage0 n 0 Λ n
56 13 55 syl x + n 1 x 0 Λ n
57 fracle1 x n x n x n 1
58 48 57 syl x + n 1 x x n x n 1
59 53 54 15 56 58 lemul2ad x + n 1 x Λ n x n x n Λ n 1
60 15 recnd x + n 1 x Λ n
61 48 recnd x + n 1 x x n
62 50 recnd x + n 1 x x n
63 60 61 62 subdid x + n 1 x Λ n x n x n = Λ n x n Λ n x n
64 rpcn x + x
65 64 adantr x + n 1 x x
66 13 nnrpd x + n 1 x n +
67 rpcnne0 n + n n 0
68 66 67 syl x + n 1 x n n 0
69 div23 Λ n x n n 0 Λ n x n = Λ n n x
70 divass Λ n x n n 0 Λ n x n = Λ n x n
71 69 70 eqtr3d Λ n x n n 0 Λ n n x = Λ n x n
72 60 65 68 71 syl3anc x + n 1 x Λ n n x = Λ n x n
73 72 oveq1d x + n 1 x Λ n n x Λ n x n = Λ n x n Λ n x n
74 63 73 eqtr4d x + n 1 x Λ n x n x n = Λ n n x Λ n x n
75 60 mulid1d x + n 1 x Λ n 1 = Λ n
76 59 74 75 3brtr3d x + n 1 x Λ n n x Λ n x n Λ n
77 11 52 15 76 fsumle x + n = 1 x Λ n n x Λ n x n n = 1 x Λ n
78 16 recnd x + n 1 x Λ n n
79 11 64 78 fsummulc1 x + n = 1 x Λ n n x = n = 1 x Λ n n x
80 logfac2 x 0 x log x ! = n = 1 x Λ n x n
81 21 80 syl x + log x ! = n = 1 x Λ n x n
82 79 81 oveq12d x + n = 1 x Λ n n x log x ! = n = 1 x Λ n n x n = 1 x Λ n x n
83 46 recnd x + n 1 x Λ n n x
84 51 recnd x + n 1 x Λ n x n
85 11 83 84 fsumsub x + n = 1 x Λ n n x Λ n x n = n = 1 x Λ n n x n = 1 x Λ n x n
86 82 85 eqtr4d x + n = 1 x Λ n n x log x ! = n = 1 x Λ n n x Λ n x n
87 chpval x ψ x = n = 1 x Λ n
88 36 87 syl x + ψ x = n = 1 x Λ n
89 77 86 88 3brtr4d x + n = 1 x Λ n n x log x ! ψ x
90 17 36 remulcld x + n = 1 x Λ n n x
91 90 26 resubcld x + n = 1 x Λ n n x log x !
92 rpregt0 x + x 0 < x
93 lediv1 n = 1 x Λ n n x log x ! ψ x x 0 < x n = 1 x Λ n n x log x ! ψ x n = 1 x Λ n n x log x ! x ψ x x
94 91 38 92 93 syl3anc x + n = 1 x Λ n n x log x ! ψ x n = 1 x Λ n n x log x ! x ψ x x
95 89 94 mpbid x + n = 1 x Λ n n x log x ! x ψ x x
96 90 recnd x + n = 1 x Λ n n x
97 26 recnd x + log x !
98 rpcnne0 x + x x 0
99 divsubdir n = 1 x Λ n n x log x ! x x 0 n = 1 x Λ n n x log x ! x = n = 1 x Λ n n x x log x ! x
100 96 97 98 99 syl3anc x + n = 1 x Λ n n x log x ! x = n = 1 x Λ n n x x log x ! x
101 rpne0 x + x 0
102 18 64 101 divcan4d x + n = 1 x Λ n n x x = n = 1 x Λ n n
103 102 oveq1d x + n = 1 x Λ n n x x log x ! x = n = 1 x Λ n n log x ! x
104 100 103 eqtr2d x + n = 1 x Λ n n log x ! x = n = 1 x Λ n n x log x ! x
105 104 fveq2d x + n = 1 x Λ n n log x ! x = n = 1 x Λ n n x log x ! x
106 rerpdivcl n = 1 x Λ n n x log x ! x + n = 1 x Λ n n x log x ! x
107 91 106 mpancom x + n = 1 x Λ n n x log x ! x
108 flle x n x n x n
109 48 108 syl x + n 1 x x n x n
110 48 50 subge0d x + n 1 x 0 x n x n x n x n
111 109 110 mpbird x + n 1 x 0 x n x n
112 15 53 56 111 mulge0d x + n 1 x 0 Λ n x n x n
113 112 74 breqtrd x + n 1 x 0 Λ n n x Λ n x n
114 11 52 113 fsumge0 x + 0 n = 1 x Λ n n x Λ n x n
115 114 86 breqtrrd x + 0 n = 1 x Λ n n x log x !
116 divge0 n = 1 x Λ n n x log x ! 0 n = 1 x Λ n n x log x ! x 0 < x 0 n = 1 x Λ n n x log x ! x
117 91 115 92 116 syl21anc x + 0 n = 1 x Λ n n x log x ! x
118 107 117 absidd x + n = 1 x Λ n n x log x ! x = n = 1 x Λ n n x log x ! x
119 105 118 eqtrd x + n = 1 x Λ n n log x ! x = n = 1 x Λ n n x log x ! x
120 chpge0 x 0 ψ x
121 36 120 syl x + 0 ψ x
122 divge0 ψ x 0 ψ x x 0 < x 0 ψ x x
123 38 121 92 122 syl21anc x + 0 ψ x x
124 40 123 absidd x + ψ x x = ψ x x
125 95 119 124 3brtr4d x + n = 1 x Λ n n log x ! x ψ x x
126 125 ad2antrl x + 1 x n = 1 x Λ n n log x ! x ψ x x
127 33 35 42 44 126 o1le x + n = 1 x Λ n n log x ! x 𝑂1
128 127 mptru x + n = 1 x Λ n n log x ! x 𝑂1
129 logfacrlim x + log x log x ! x 1
130 rlimo1 x + log x log x ! x 1 x + log x log x ! x 𝑂1
131 129 130 ax-mp x + log x log x ! x 𝑂1
132 o1sub x + n = 1 x Λ n n log x ! x 𝑂1 x + log x log x ! x 𝑂1 x + n = 1 x Λ n n log x ! x f x + log x log x ! x 𝑂1
133 128 131 132 mp2an x + n = 1 x Λ n n log x ! x f x + log x log x ! x 𝑂1
134 32 133 eqeltrri x + n = 1 x Λ n n log x 𝑂1