Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|
2 |
|
elicopnf |
|
3 |
1 2
|
mp1i |
|
4 |
3
|
simprbda |
|
5 |
|
1rp |
|
6 |
5
|
a1i |
|
7 |
3
|
simplbda |
|
8 |
4 6 7
|
rpgecld |
|
9 |
8
|
ex |
|
10 |
9
|
ssrdv |
|
11 |
|
rpssre |
|
12 |
10 11
|
sstrdi |
|
13 |
1
|
a1i |
|
14 |
|
fzfid |
|
15 |
|
elfznn |
|
16 |
15
|
adantl |
|
17 |
|
vmacl |
|
18 |
16 17
|
syl |
|
19 |
18 16
|
nndivred |
|
20 |
14 19
|
fsumrecl |
|
21 |
8
|
relogcld |
|
22 |
20 21
|
resubcld |
|
23 |
22
|
recnd |
|
24 |
|
vmadivsum |
|
25 |
24
|
a1i |
|
26 |
10 25
|
o1res2 |
|
27 |
|
fzfid |
|
28 |
|
elfznn |
|
29 |
28
|
adantl |
|
30 |
29 17
|
syl |
|
31 |
30 29
|
nndivred |
|
32 |
27 31
|
fsumrecl |
|
33 |
|
simprl |
|
34 |
5
|
a1i |
|
35 |
|
simprr |
|
36 |
33 34 35
|
rpgecld |
|
37 |
36
|
relogcld |
|
38 |
32 37
|
readdcld |
|
39 |
22
|
adantr |
|
40 |
39
|
recnd |
|
41 |
40
|
abscld |
|
42 |
20
|
adantr |
|
43 |
8
|
adantr |
|
44 |
43
|
relogcld |
|
45 |
42 44
|
readdcld |
|
46 |
38
|
ad2ant2r |
|
47 |
42
|
recnd |
|
48 |
44
|
recnd |
|
49 |
47 48
|
abs2dif2d |
|
50 |
16
|
nnrpd |
|
51 |
|
vmage0 |
|
52 |
16 51
|
syl |
|
53 |
18 50 52
|
divge0d |
|
54 |
14 19 53
|
fsumge0 |
|
55 |
54
|
adantr |
|
56 |
42 55
|
absidd |
|
57 |
21
|
adantr |
|
58 |
4
|
adantr |
|
59 |
7
|
adantr |
|
60 |
58 59
|
logge0d |
|
61 |
57 60
|
absidd |
|
62 |
56 61
|
oveq12d |
|
63 |
49 62
|
breqtrd |
|
64 |
32
|
ad2ant2r |
|
65 |
36
|
ad2ant2r |
|
66 |
65
|
relogcld |
|
67 |
|
fzfid |
|
68 |
28
|
adantl |
|
69 |
68 17
|
syl |
|
70 |
69 68
|
nndivred |
|
71 |
68
|
nnrpd |
|
72 |
68 51
|
syl |
|
73 |
69 71 72
|
divge0d |
|
74 |
|
simprll |
|
75 |
|
simprr |
|
76 |
58 74 75
|
ltled |
|
77 |
|
flword2 |
|
78 |
58 74 76 77
|
syl3anc |
|
79 |
|
fzss2 |
|
80 |
78 79
|
syl |
|
81 |
67 70 73 80
|
fsumless |
|
82 |
74 43 76
|
rpgecld |
|
83 |
43 82
|
logled |
|
84 |
76 83
|
mpbid |
|
85 |
42 44 64 66 81 84
|
le2addd |
|
86 |
41 45 46 63 85
|
letrd |
|
87 |
12 13 23 26 38 86
|
o1bddrp |
|
88 |
87
|
mptru |
|