Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
vmaf
Next ⟩
efvmacl
Metamath Proof Explorer
Ascii
Unicode
Theorem
vmaf
Description:
Functionality of the von Mangoldt function.
(Contributed by
Mario Carneiro
, 7-Apr-2016)
Ref
Expression
Assertion
vmaf
⊢
Λ
:
ℕ
⟶
ℝ
Proof
Step
Hyp
Ref
Expression
1
fvex
⊢
log
⁡
⋃
s
∈
V
2
c0ex
⊢
0
∈
V
3
1
2
ifex
⊢
if
s
=
1
log
⁡
⋃
s
0
∈
V
4
3
csbex
⊢
⦋
p
∈
ℙ
|
p
∥
x
/
s
⦌
if
s
=
1
log
⁡
⋃
s
0
∈
V
5
4
a1i
⊢
⊤
∧
x
∈
ℕ
→
⦋
p
∈
ℙ
|
p
∥
x
/
s
⦌
if
s
=
1
log
⁡
⋃
s
0
∈
V
6
df-vma
⊢
Λ
=
x
∈
ℕ
⟼
⦋
p
∈
ℙ
|
p
∥
x
/
s
⦌
if
s
=
1
log
⁡
⋃
s
0
7
6
a1i
⊢
⊤
→
Λ
=
x
∈
ℕ
⟼
⦋
p
∈
ℙ
|
p
∥
x
/
s
⦌
if
s
=
1
log
⁡
⋃
s
0
8
vmacl
⊢
n
∈
ℕ
→
Λ
⁡
n
∈
ℝ
9
8
adantl
⊢
⊤
∧
n
∈
ℕ
→
Λ
⁡
n
∈
ℝ
10
5
7
9
fmpt2d
⊢
⊤
→
Λ
:
ℕ
⟶
ℝ
11
10
mptru
⊢
Λ
:
ℕ
⟶
ℝ