Metamath Proof Explorer


Theorem vmalelog

Description: The von Mangoldt function is less than the natural log. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion vmalelog A Λ A log A

Proof

Step Hyp Ref Expression
1 breq1 Λ A = 0 Λ A log A 0 log A
2 isppw2 A Λ A 0 p k A = p k
3 prmnn p p
4 3 nnrpd p p +
5 4 adantr p k p +
6 5 relogcld p k log p
7 nnre k k
8 7 adantl p k k
9 log1 log 1 = 0
10 3 adantr p k p
11 10 nnge1d p k 1 p
12 1rp 1 +
13 logleb 1 + p + 1 p log 1 log p
14 12 5 13 sylancr p k 1 p log 1 log p
15 11 14 mpbid p k log 1 log p
16 9 15 eqbrtrrid p k 0 log p
17 nnge1 k 1 k
18 17 adantl p k 1 k
19 6 8 16 18 lemulge12d p k log p k log p
20 vmappw p k Λ p k = log p
21 nnz k k
22 relogexp p + k log p k = k log p
23 4 21 22 syl2an p k log p k = k log p
24 19 20 23 3brtr4d p k Λ p k log p k
25 fveq2 A = p k Λ A = Λ p k
26 fveq2 A = p k log A = log p k
27 25 26 breq12d A = p k Λ A log A Λ p k log p k
28 24 27 syl5ibrcom p k A = p k Λ A log A
29 28 rexlimivv p k A = p k Λ A log A
30 2 29 syl6bi A Λ A 0 Λ A log A
31 30 imp A Λ A 0 Λ A log A
32 nnge1 A 1 A
33 nnrp A A +
34 logleb 1 + A + 1 A log 1 log A
35 12 33 34 sylancr A 1 A log 1 log A
36 32 35 mpbid A log 1 log A
37 9 36 eqbrtrrid A 0 log A
38 1 31 37 pm2.61ne A Λ A log A