Metamath Proof Explorer


Theorem vmalogdivsum

Description: The sum sum_ n <_ x , Lam ( n ) log n / n is asymptotic to log ^ 2 ( x ) / 2 + O ( log x ) . Exercise 9.1.7 of Shapiro, p. 336. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion vmalogdivsum x 1 +∞ n = 1 x Λ n n log n log x log x 2 𝑂1

Proof

Step Hyp Ref Expression
1 elioore x 1 +∞ x
2 1 adantl x 1 +∞ x
3 1rp 1 +
4 3 a1i x 1 +∞ 1 +
5 1red x 1 +∞ 1
6 eliooord x 1 +∞ 1 < x x < +∞
7 6 adantl x 1 +∞ 1 < x x < +∞
8 7 simpld x 1 +∞ 1 < x
9 5 2 8 ltled x 1 +∞ 1 x
10 2 4 9 rpgecld x 1 +∞ x +
11 10 ex x 1 +∞ x +
12 11 ssrdv 1 +∞ +
13 vmadivsum x + n = 1 x Λ n n log x 𝑂1
14 13 a1i x + n = 1 x Λ n n log x 𝑂1
15 12 14 o1res2 x 1 +∞ n = 1 x Λ n n log x 𝑂1
16 fzfid x 1 +∞ 1 x Fin
17 elfznn n 1 x n
18 17 adantl x 1 +∞ n 1 x n
19 vmacl n Λ n
20 18 19 syl x 1 +∞ n 1 x Λ n
21 20 18 nndivred x 1 +∞ n 1 x Λ n n
22 21 recnd x 1 +∞ n 1 x Λ n n
23 16 22 fsumcl x 1 +∞ n = 1 x Λ n n
24 10 relogcld x 1 +∞ log x
25 24 recnd x 1 +∞ log x
26 23 25 subcld x 1 +∞ n = 1 x Λ n n log x
27 18 nnrpd x 1 +∞ n 1 x n +
28 27 relogcld x 1 +∞ n 1 x log n
29 21 28 remulcld x 1 +∞ n 1 x Λ n n log n
30 16 29 fsumrecl x 1 +∞ n = 1 x Λ n n log n
31 2 8 rplogcld x 1 +∞ log x +
32 30 31 rerpdivcld x 1 +∞ n = 1 x Λ n n log n log x
33 24 rehalfcld x 1 +∞ log x 2
34 32 33 resubcld x 1 +∞ n = 1 x Λ n n log n log x log x 2
35 34 recnd x 1 +∞ n = 1 x Λ n n log n log x log x 2
36 33 recnd x 1 +∞ log x 2
37 23 36 subcld x 1 +∞ n = 1 x Λ n n log x 2
38 32 recnd x 1 +∞ n = 1 x Λ n n log n log x
39 37 38 36 nnncan2d x 1 +∞ n = 1 x Λ n n log x 2 - log x 2 - n = 1 x Λ n n log n log x log x 2 = n = 1 x Λ n n - log x 2 - n = 1 x Λ n n log n log x
40 23 36 36 subsub4d x 1 +∞ n = 1 x Λ n n - log x 2 - log x 2 = n = 1 x Λ n n log x 2 + log x 2
41 25 2halvesd x 1 +∞ log x 2 + log x 2 = log x
42 41 oveq2d x 1 +∞ n = 1 x Λ n n log x 2 + log x 2 = n = 1 x Λ n n log x
43 40 42 eqtrd x 1 +∞ n = 1 x Λ n n - log x 2 - log x 2 = n = 1 x Λ n n log x
44 43 oveq1d x 1 +∞ n = 1 x Λ n n log x 2 - log x 2 - n = 1 x Λ n n log n log x log x 2 = n = 1 x Λ n n - log x - n = 1 x Λ n n log n log x log x 2
45 23 36 38 sub32d x 1 +∞ n = 1 x Λ n n - log x 2 - n = 1 x Λ n n log n log x = n = 1 x Λ n n - n = 1 x Λ n n log n log x - log x 2
46 10 adantr x 1 +∞ n 1 x x +
47 46 relogcld x 1 +∞ n 1 x log x
48 21 47 remulcld x 1 +∞ n 1 x Λ n n log x
49 48 recnd x 1 +∞ n 1 x Λ n n log x
50 29 recnd x 1 +∞ n 1 x Λ n n log n
51 16 49 50 fsumsub x 1 +∞ n = 1 x Λ n n log x Λ n n log n = n = 1 x Λ n n log x n = 1 x Λ n n log n
52 46 27 relogdivd x 1 +∞ n 1 x log x n = log x log n
53 52 oveq2d x 1 +∞ n 1 x Λ n n log x n = Λ n n log x log n
54 25 adantr x 1 +∞ n 1 x log x
55 28 recnd x 1 +∞ n 1 x log n
56 22 54 55 subdid x 1 +∞ n 1 x Λ n n log x log n = Λ n n log x Λ n n log n
57 53 56 eqtrd x 1 +∞ n 1 x Λ n n log x n = Λ n n log x Λ n n log n
58 57 sumeq2dv x 1 +∞ n = 1 x Λ n n log x n = n = 1 x Λ n n log x Λ n n log n
59 20 recnd x 1 +∞ n 1 x Λ n
60 18 nncnd x 1 +∞ n 1 x n
61 18 nnne0d x 1 +∞ n 1 x n 0
62 59 60 61 divcld x 1 +∞ n 1 x Λ n n
63 16 25 62 fsummulc1 x 1 +∞ n = 1 x Λ n n log x = n = 1 x Λ n n log x
64 63 oveq1d x 1 +∞ n = 1 x Λ n n log x n = 1 x Λ n n log n = n = 1 x Λ n n log x n = 1 x Λ n n log n
65 51 58 64 3eqtr4d x 1 +∞ n = 1 x Λ n n log x n = n = 1 x Λ n n log x n = 1 x Λ n n log n
66 65 oveq1d x 1 +∞ n = 1 x Λ n n log x n log x = n = 1 x Λ n n log x n = 1 x Λ n n log n log x
67 23 25 mulcld x 1 +∞ n = 1 x Λ n n log x
68 30 recnd x 1 +∞ n = 1 x Λ n n log n
69 31 rpne0d x 1 +∞ log x 0
70 67 68 25 69 divsubdird x 1 +∞ n = 1 x Λ n n log x n = 1 x Λ n n log n log x = n = 1 x Λ n n log x log x n = 1 x Λ n n log n log x
71 23 25 69 divcan4d x 1 +∞ n = 1 x Λ n n log x log x = n = 1 x Λ n n
72 71 oveq1d x 1 +∞ n = 1 x Λ n n log x log x n = 1 x Λ n n log n log x = n = 1 x Λ n n n = 1 x Λ n n log n log x
73 66 70 72 3eqtrd x 1 +∞ n = 1 x Λ n n log x n log x = n = 1 x Λ n n n = 1 x Λ n n log n log x
74 73 oveq1d x 1 +∞ n = 1 x Λ n n log x n log x log x 2 = n = 1 x Λ n n - n = 1 x Λ n n log n log x - log x 2
75 45 74 eqtr4d x 1 +∞ n = 1 x Λ n n - log x 2 - n = 1 x Λ n n log n log x = n = 1 x Λ n n log x n log x log x 2
76 39 44 75 3eqtr3d x 1 +∞ n = 1 x Λ n n - log x - n = 1 x Λ n n log n log x log x 2 = n = 1 x Λ n n log x n log x log x 2
77 76 mpteq2dva x 1 +∞ n = 1 x Λ n n - log x - n = 1 x Λ n n log n log x log x 2 = x 1 +∞ n = 1 x Λ n n log x n log x log x 2
78 vmalogdivsum2 x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
79 77 78 eqeltrdi x 1 +∞ n = 1 x Λ n n - log x - n = 1 x Λ n n log n log x log x 2 𝑂1
80 26 35 79 o1dif x 1 +∞ n = 1 x Λ n n log x 𝑂1 x 1 +∞ n = 1 x Λ n n log n log x log x 2 𝑂1
81 15 80 mpbid x 1 +∞ n = 1 x Λ n n log n log x log x 2 𝑂1
82 81 mptru x 1 +∞ n = 1 x Λ n n log n log x log x 2 𝑂1