Step |
Hyp |
Ref |
Expression |
1 |
|
elioore |
|
2 |
1
|
adantl |
|
3 |
|
1rp |
|
4 |
3
|
a1i |
|
5 |
|
1red |
|
6 |
|
eliooord |
|
7 |
6
|
adantl |
|
8 |
7
|
simpld |
|
9 |
5 2 8
|
ltled |
|
10 |
2 4 9
|
rpgecld |
|
11 |
10
|
ex |
|
12 |
11
|
ssrdv |
|
13 |
|
vmadivsum |
|
14 |
13
|
a1i |
|
15 |
12 14
|
o1res2 |
|
16 |
|
fzfid |
|
17 |
|
elfznn |
|
18 |
17
|
adantl |
|
19 |
|
vmacl |
|
20 |
18 19
|
syl |
|
21 |
20 18
|
nndivred |
|
22 |
21
|
recnd |
|
23 |
16 22
|
fsumcl |
|
24 |
10
|
relogcld |
|
25 |
24
|
recnd |
|
26 |
23 25
|
subcld |
|
27 |
18
|
nnrpd |
|
28 |
27
|
relogcld |
|
29 |
21 28
|
remulcld |
|
30 |
16 29
|
fsumrecl |
|
31 |
2 8
|
rplogcld |
|
32 |
30 31
|
rerpdivcld |
|
33 |
24
|
rehalfcld |
|
34 |
32 33
|
resubcld |
|
35 |
34
|
recnd |
|
36 |
33
|
recnd |
|
37 |
23 36
|
subcld |
|
38 |
32
|
recnd |
|
39 |
37 38 36
|
nnncan2d |
|
40 |
23 36 36
|
subsub4d |
|
41 |
25
|
2halvesd |
|
42 |
41
|
oveq2d |
|
43 |
40 42
|
eqtrd |
|
44 |
43
|
oveq1d |
|
45 |
23 36 38
|
sub32d |
|
46 |
10
|
adantr |
|
47 |
46
|
relogcld |
|
48 |
21 47
|
remulcld |
|
49 |
48
|
recnd |
|
50 |
29
|
recnd |
|
51 |
16 49 50
|
fsumsub |
|
52 |
46 27
|
relogdivd |
|
53 |
52
|
oveq2d |
|
54 |
25
|
adantr |
|
55 |
28
|
recnd |
|
56 |
22 54 55
|
subdid |
|
57 |
53 56
|
eqtrd |
|
58 |
57
|
sumeq2dv |
|
59 |
20
|
recnd |
|
60 |
18
|
nncnd |
|
61 |
18
|
nnne0d |
|
62 |
59 60 61
|
divcld |
|
63 |
16 25 62
|
fsummulc1 |
|
64 |
63
|
oveq1d |
|
65 |
51 58 64
|
3eqtr4d |
|
66 |
65
|
oveq1d |
|
67 |
23 25
|
mulcld |
|
68 |
30
|
recnd |
|
69 |
31
|
rpne0d |
|
70 |
67 68 25 69
|
divsubdird |
|
71 |
23 25 69
|
divcan4d |
|
72 |
71
|
oveq1d |
|
73 |
66 70 72
|
3eqtrd |
|
74 |
73
|
oveq1d |
|
75 |
45 74
|
eqtr4d |
|
76 |
39 44 75
|
3eqtr3d |
|
77 |
76
|
mpteq2dva |
|
78 |
|
vmalogdivsum2 |
|
79 |
77 78
|
eqeltrdi |
|
80 |
26 35 79
|
o1dif |
|
81 |
15 80
|
mpbid |
|
82 |
81
|
mptru |
|