| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
elfznn |
|
| 3 |
2
|
adantl |
|
| 4 |
3
|
nnrpd |
|
| 5 |
4
|
relogcld |
|
| 6 |
5 3
|
nndivred |
|
| 7 |
1 6
|
fsumrecl |
|
| 8 |
7
|
recnd |
|
| 9 |
|
elioore |
|
| 10 |
9
|
adantl |
|
| 11 |
|
1rp |
|
| 12 |
11
|
a1i |
|
| 13 |
|
1red |
|
| 14 |
|
eliooord |
|
| 15 |
14
|
adantl |
|
| 16 |
15
|
simpld |
|
| 17 |
13 10 16
|
ltled |
|
| 18 |
10 12 17
|
rpgecld |
|
| 19 |
18
|
relogcld |
|
| 20 |
19
|
resqcld |
|
| 21 |
20
|
rehalfcld |
|
| 22 |
21
|
recnd |
|
| 23 |
19
|
recnd |
|
| 24 |
10 16
|
rplogcld |
|
| 25 |
24
|
rpne0d |
|
| 26 |
8 22 23 25
|
divsubdird |
|
| 27 |
7 21
|
resubcld |
|
| 28 |
27
|
recnd |
|
| 29 |
28 23 25
|
divrecd |
|
| 30 |
20
|
recnd |
|
| 31 |
|
2cnd |
|
| 32 |
|
2ne0 |
|
| 33 |
32
|
a1i |
|
| 34 |
30 31 23 33 25
|
divdiv32d |
|
| 35 |
23
|
sqvald |
|
| 36 |
35
|
oveq1d |
|
| 37 |
23 23 25
|
divcan3d |
|
| 38 |
36 37
|
eqtrd |
|
| 39 |
38
|
oveq1d |
|
| 40 |
34 39
|
eqtrd |
|
| 41 |
40
|
oveq2d |
|
| 42 |
26 29 41
|
3eqtr3rd |
|
| 43 |
42
|
mpteq2dva |
|
| 44 |
24
|
rprecred |
|
| 45 |
18
|
ex |
|
| 46 |
45
|
ssrdv |
|
| 47 |
|
eqid |
|
| 48 |
47
|
logdivsum |
|
| 49 |
48
|
simp2i |
|
| 50 |
|
rlimdmo1 |
|
| 51 |
49 50
|
mp1i |
|
| 52 |
46 51
|
o1res2 |
|
| 53 |
|
divlogrlim |
|
| 54 |
|
rlimo1 |
|
| 55 |
53 54
|
mp1i |
|
| 56 |
27 44 52 55
|
o1mul2 |
|
| 57 |
43 56
|
eqeltrd |
|
| 58 |
8 23 25
|
divcld |
|
| 59 |
23
|
halfcld |
|
| 60 |
58 59
|
subcld |
|
| 61 |
|
elfznn |
|
| 62 |
61
|
adantl |
|
| 63 |
|
vmacl |
|
| 64 |
62 63
|
syl |
|
| 65 |
64 62
|
nndivred |
|
| 66 |
18
|
adantr |
|
| 67 |
62
|
nnrpd |
|
| 68 |
66 67
|
rpdivcld |
|
| 69 |
68
|
relogcld |
|
| 70 |
65 69
|
remulcld |
|
| 71 |
1 70
|
fsumrecl |
|
| 72 |
71
|
recnd |
|
| 73 |
24
|
rpcnd |
|
| 74 |
72 73 25
|
divcld |
|
| 75 |
73
|
halfcld |
|
| 76 |
74 75
|
subcld |
|
| 77 |
58 74 59
|
nnncan2d |
|
| 78 |
8 72 23 25
|
divsubdird |
|
| 79 |
|
fzfid |
|
| 80 |
64
|
adantr |
|
| 81 |
62
|
adantr |
|
| 82 |
|
elfznn |
|
| 83 |
82
|
adantl |
|
| 84 |
81 83
|
nnmulcld |
|
| 85 |
80 84
|
nndivred |
|
| 86 |
79 85
|
fsumrecl |
|
| 87 |
86
|
recnd |
|
| 88 |
70
|
recnd |
|
| 89 |
1 87 88
|
fsumsub |
|
| 90 |
64
|
recnd |
|
| 91 |
62
|
nncnd |
|
| 92 |
62
|
nnne0d |
|
| 93 |
90 91 92
|
divcld |
|
| 94 |
83
|
nnrecred |
|
| 95 |
79 94
|
fsumrecl |
|
| 96 |
95
|
recnd |
|
| 97 |
69
|
recnd |
|
| 98 |
93 96 97
|
subdid |
|
| 99 |
90
|
adantr |
|
| 100 |
91
|
adantr |
|
| 101 |
83
|
nncnd |
|
| 102 |
92
|
adantr |
|
| 103 |
83
|
nnne0d |
|
| 104 |
99 100 101 102 103
|
divdiv1d |
|
| 105 |
99 100 102
|
divcld |
|
| 106 |
105 101 103
|
divrecd |
|
| 107 |
104 106
|
eqtr3d |
|
| 108 |
107
|
sumeq2dv |
|
| 109 |
101 103
|
reccld |
|
| 110 |
79 93 109
|
fsummulc2 |
|
| 111 |
108 110
|
eqtr4d |
|
| 112 |
111
|
oveq1d |
|
| 113 |
98 112
|
eqtr4d |
|
| 114 |
113
|
sumeq2dv |
|
| 115 |
|
vmasum |
|
| 116 |
3 115
|
syl |
|
| 117 |
116
|
oveq1d |
|
| 118 |
|
fzfid |
|
| 119 |
|
dvdsssfz1 |
|
| 120 |
3 119
|
syl |
|
| 121 |
118 120
|
ssfid |
|
| 122 |
3
|
nncnd |
|
| 123 |
|
ssrab2 |
|
| 124 |
|
simprr |
|
| 125 |
123 124
|
sselid |
|
| 126 |
125 63
|
syl |
|
| 127 |
126
|
recnd |
|
| 128 |
127
|
anassrs |
|
| 129 |
3
|
nnne0d |
|
| 130 |
121 122 128 129
|
fsumdivc |
|
| 131 |
117 130
|
eqtr3d |
|
| 132 |
131
|
sumeq2dv |
|
| 133 |
|
oveq2 |
|
| 134 |
2
|
ad2antrl |
|
| 135 |
134
|
nncnd |
|
| 136 |
134
|
nnne0d |
|
| 137 |
127 135 136
|
divcld |
|
| 138 |
133 10 137
|
dvdsflsumcom |
|
| 139 |
132 138
|
eqtrd |
|
| 140 |
139
|
oveq1d |
|
| 141 |
89 114 140
|
3eqtr4rd |
|
| 142 |
141
|
oveq1d |
|
| 143 |
77 78 142
|
3eqtr2d |
|
| 144 |
143
|
mpteq2dva |
|
| 145 |
|
1red |
|
| 146 |
1 65
|
fsumrecl |
|
| 147 |
146 24
|
rerpdivcld |
|
| 148 |
|
ioossre |
|
| 149 |
|
ax-1cn |
|
| 150 |
|
o1const |
|
| 151 |
148 149 150
|
mp2an |
|
| 152 |
151
|
a1i |
|
| 153 |
147
|
recnd |
|
| 154 |
12
|
rpcnd |
|
| 155 |
146
|
recnd |
|
| 156 |
155 23 23 25
|
divsubdird |
|
| 157 |
155 23
|
subcld |
|
| 158 |
157 23 25
|
divrecd |
|
| 159 |
23 25
|
dividd |
|
| 160 |
159
|
oveq2d |
|
| 161 |
156 158 160
|
3eqtr3rd |
|
| 162 |
161
|
mpteq2dva |
|
| 163 |
146 19
|
resubcld |
|
| 164 |
|
vmadivsum |
|
| 165 |
164
|
a1i |
|
| 166 |
46 165
|
o1res2 |
|
| 167 |
163 44 166 55
|
o1mul2 |
|
| 168 |
162 167
|
eqeltrd |
|
| 169 |
153 154 168
|
o1dif |
|
| 170 |
152 169
|
mpbird |
|
| 171 |
147 170
|
o1lo1d |
|
| 172 |
95 69
|
resubcld |
|
| 173 |
65 172
|
remulcld |
|
| 174 |
1 173
|
fsumrecl |
|
| 175 |
174 24
|
rerpdivcld |
|
| 176 |
|
1red |
|
| 177 |
|
vmage0 |
|
| 178 |
62 177
|
syl |
|
| 179 |
64 67 178
|
divge0d |
|
| 180 |
68
|
rpred |
|
| 181 |
91
|
mullidd |
|
| 182 |
|
fznnfl |
|
| 183 |
10 182
|
syl |
|
| 184 |
183
|
simplbda |
|
| 185 |
181 184
|
eqbrtrd |
|
| 186 |
10
|
adantr |
|
| 187 |
176 186 67
|
lemuldivd |
|
| 188 |
185 187
|
mpbid |
|
| 189 |
|
harmonicubnd |
|
| 190 |
180 188 189
|
syl2anc |
|
| 191 |
95 69 176
|
lesubadd2d |
|
| 192 |
190 191
|
mpbird |
|
| 193 |
172 176 65 179 192
|
lemul2ad |
|
| 194 |
93
|
mulridd |
|
| 195 |
193 194
|
breqtrd |
|
| 196 |
1 173 65 195
|
fsumle |
|
| 197 |
174 146 24 196
|
lediv1dd |
|
| 198 |
197
|
adantrr |
|
| 199 |
145 171 147 175 198
|
lo1le |
|
| 200 |
|
0red |
|
| 201 |
|
harmoniclbnd |
|
| 202 |
68 201
|
syl |
|
| 203 |
95 69
|
subge0d |
|
| 204 |
202 203
|
mpbird |
|
| 205 |
65 172 179 204
|
mulge0d |
|
| 206 |
1 173 205
|
fsumge0 |
|
| 207 |
174 24 206
|
divge0d |
|
| 208 |
175 200 207
|
o1lo12 |
|
| 209 |
199 208
|
mpbird |
|
| 210 |
144 209
|
eqeltrd |
|
| 211 |
60 76 210
|
o1dif |
|
| 212 |
57 211
|
mpbid |
|
| 213 |
212
|
mptru |
|