Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
elfznn |
|
3 |
2
|
adantl |
|
4 |
3
|
nnrpd |
|
5 |
4
|
relogcld |
|
6 |
5 3
|
nndivred |
|
7 |
1 6
|
fsumrecl |
|
8 |
7
|
recnd |
|
9 |
|
elioore |
|
10 |
9
|
adantl |
|
11 |
|
1rp |
|
12 |
11
|
a1i |
|
13 |
|
1red |
|
14 |
|
eliooord |
|
15 |
14
|
adantl |
|
16 |
15
|
simpld |
|
17 |
13 10 16
|
ltled |
|
18 |
10 12 17
|
rpgecld |
|
19 |
18
|
relogcld |
|
20 |
19
|
resqcld |
|
21 |
20
|
rehalfcld |
|
22 |
21
|
recnd |
|
23 |
19
|
recnd |
|
24 |
10 16
|
rplogcld |
|
25 |
24
|
rpne0d |
|
26 |
8 22 23 25
|
divsubdird |
|
27 |
7 21
|
resubcld |
|
28 |
27
|
recnd |
|
29 |
28 23 25
|
divrecd |
|
30 |
20
|
recnd |
|
31 |
|
2cnd |
|
32 |
|
2ne0 |
|
33 |
32
|
a1i |
|
34 |
30 31 23 33 25
|
divdiv32d |
|
35 |
23
|
sqvald |
|
36 |
35
|
oveq1d |
|
37 |
23 23 25
|
divcan3d |
|
38 |
36 37
|
eqtrd |
|
39 |
38
|
oveq1d |
|
40 |
34 39
|
eqtrd |
|
41 |
40
|
oveq2d |
|
42 |
26 29 41
|
3eqtr3rd |
|
43 |
42
|
mpteq2dva |
|
44 |
24
|
rprecred |
|
45 |
18
|
ex |
|
46 |
45
|
ssrdv |
|
47 |
|
eqid |
|
48 |
47
|
logdivsum |
|
49 |
48
|
simp2i |
|
50 |
|
rlimdmo1 |
|
51 |
49 50
|
mp1i |
|
52 |
46 51
|
o1res2 |
|
53 |
|
divlogrlim |
|
54 |
|
rlimo1 |
|
55 |
53 54
|
mp1i |
|
56 |
27 44 52 55
|
o1mul2 |
|
57 |
43 56
|
eqeltrd |
|
58 |
8 23 25
|
divcld |
|
59 |
23
|
halfcld |
|
60 |
58 59
|
subcld |
|
61 |
|
elfznn |
|
62 |
61
|
adantl |
|
63 |
|
vmacl |
|
64 |
62 63
|
syl |
|
65 |
64 62
|
nndivred |
|
66 |
18
|
adantr |
|
67 |
62
|
nnrpd |
|
68 |
66 67
|
rpdivcld |
|
69 |
68
|
relogcld |
|
70 |
65 69
|
remulcld |
|
71 |
1 70
|
fsumrecl |
|
72 |
71
|
recnd |
|
73 |
24
|
rpcnd |
|
74 |
72 73 25
|
divcld |
|
75 |
73
|
halfcld |
|
76 |
74 75
|
subcld |
|
77 |
58 74 59
|
nnncan2d |
|
78 |
8 72 23 25
|
divsubdird |
|
79 |
|
fzfid |
|
80 |
64
|
adantr |
|
81 |
62
|
adantr |
|
82 |
|
elfznn |
|
83 |
82
|
adantl |
|
84 |
81 83
|
nnmulcld |
|
85 |
80 84
|
nndivred |
|
86 |
79 85
|
fsumrecl |
|
87 |
86
|
recnd |
|
88 |
70
|
recnd |
|
89 |
1 87 88
|
fsumsub |
|
90 |
64
|
recnd |
|
91 |
62
|
nncnd |
|
92 |
62
|
nnne0d |
|
93 |
90 91 92
|
divcld |
|
94 |
83
|
nnrecred |
|
95 |
79 94
|
fsumrecl |
|
96 |
95
|
recnd |
|
97 |
69
|
recnd |
|
98 |
93 96 97
|
subdid |
|
99 |
90
|
adantr |
|
100 |
91
|
adantr |
|
101 |
83
|
nncnd |
|
102 |
92
|
adantr |
|
103 |
83
|
nnne0d |
|
104 |
99 100 101 102 103
|
divdiv1d |
|
105 |
99 100 102
|
divcld |
|
106 |
105 101 103
|
divrecd |
|
107 |
104 106
|
eqtr3d |
|
108 |
107
|
sumeq2dv |
|
109 |
101 103
|
reccld |
|
110 |
79 93 109
|
fsummulc2 |
|
111 |
108 110
|
eqtr4d |
|
112 |
111
|
oveq1d |
|
113 |
98 112
|
eqtr4d |
|
114 |
113
|
sumeq2dv |
|
115 |
|
vmasum |
|
116 |
3 115
|
syl |
|
117 |
116
|
oveq1d |
|
118 |
|
fzfid |
|
119 |
|
dvdsssfz1 |
|
120 |
3 119
|
syl |
|
121 |
118 120
|
ssfid |
|
122 |
3
|
nncnd |
|
123 |
|
ssrab2 |
|
124 |
|
simprr |
|
125 |
123 124
|
sselid |
|
126 |
125 63
|
syl |
|
127 |
126
|
recnd |
|
128 |
127
|
anassrs |
|
129 |
3
|
nnne0d |
|
130 |
121 122 128 129
|
fsumdivc |
|
131 |
117 130
|
eqtr3d |
|
132 |
131
|
sumeq2dv |
|
133 |
|
oveq2 |
|
134 |
2
|
ad2antrl |
|
135 |
134
|
nncnd |
|
136 |
134
|
nnne0d |
|
137 |
127 135 136
|
divcld |
|
138 |
133 10 137
|
dvdsflsumcom |
|
139 |
132 138
|
eqtrd |
|
140 |
139
|
oveq1d |
|
141 |
89 114 140
|
3eqtr4rd |
|
142 |
141
|
oveq1d |
|
143 |
77 78 142
|
3eqtr2d |
|
144 |
143
|
mpteq2dva |
|
145 |
|
1red |
|
146 |
1 65
|
fsumrecl |
|
147 |
146 24
|
rerpdivcld |
|
148 |
|
ioossre |
|
149 |
|
ax-1cn |
|
150 |
|
o1const |
|
151 |
148 149 150
|
mp2an |
|
152 |
151
|
a1i |
|
153 |
147
|
recnd |
|
154 |
12
|
rpcnd |
|
155 |
146
|
recnd |
|
156 |
155 23 23 25
|
divsubdird |
|
157 |
155 23
|
subcld |
|
158 |
157 23 25
|
divrecd |
|
159 |
23 25
|
dividd |
|
160 |
159
|
oveq2d |
|
161 |
156 158 160
|
3eqtr3rd |
|
162 |
161
|
mpteq2dva |
|
163 |
146 19
|
resubcld |
|
164 |
|
vmadivsum |
|
165 |
164
|
a1i |
|
166 |
46 165
|
o1res2 |
|
167 |
163 44 166 55
|
o1mul2 |
|
168 |
162 167
|
eqeltrd |
|
169 |
153 154 168
|
o1dif |
|
170 |
152 169
|
mpbird |
|
171 |
147 170
|
o1lo1d |
|
172 |
95 69
|
resubcld |
|
173 |
65 172
|
remulcld |
|
174 |
1 173
|
fsumrecl |
|
175 |
174 24
|
rerpdivcld |
|
176 |
|
1red |
|
177 |
|
vmage0 |
|
178 |
62 177
|
syl |
|
179 |
64 67 178
|
divge0d |
|
180 |
68
|
rpred |
|
181 |
91
|
mulid2d |
|
182 |
|
fznnfl |
|
183 |
10 182
|
syl |
|
184 |
183
|
simplbda |
|
185 |
181 184
|
eqbrtrd |
|
186 |
10
|
adantr |
|
187 |
176 186 67
|
lemuldivd |
|
188 |
185 187
|
mpbid |
|
189 |
|
harmonicubnd |
|
190 |
180 188 189
|
syl2anc |
|
191 |
95 69 176
|
lesubadd2d |
|
192 |
190 191
|
mpbird |
|
193 |
172 176 65 179 192
|
lemul2ad |
|
194 |
93
|
mulid1d |
|
195 |
193 194
|
breqtrd |
|
196 |
1 173 65 195
|
fsumle |
|
197 |
174 146 24 196
|
lediv1dd |
|
198 |
197
|
adantrr |
|
199 |
145 171 147 175 198
|
lo1le |
|
200 |
|
0red |
|
201 |
|
harmoniclbnd |
|
202 |
68 201
|
syl |
|
203 |
95 69
|
subge0d |
|
204 |
202 203
|
mpbird |
|
205 |
65 172 179 204
|
mulge0d |
|
206 |
1 173 205
|
fsumge0 |
|
207 |
174 24 206
|
divge0d |
|
208 |
175 200 207
|
o1lo12 |
|
209 |
199 208
|
mpbird |
|
210 |
144 209
|
eqeltrd |
|
211 |
60 76 210
|
o1dif |
|
212 |
57 211
|
mpbid |
|
213 |
212
|
mptru |
|