Metamath Proof Explorer


Theorem vmalogdivsum2

Description: The sum sum_ n <_ x , Lam ( n ) log ( x / n ) / n is asymptotic to log ^ 2 ( x ) / 2 + O ( log x ) . Exercise 9.1.7 of Shapiro, p. 336. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion vmalogdivsum2 x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1

Proof

Step Hyp Ref Expression
1 fzfid x 1 +∞ 1 x Fin
2 elfznn k 1 x k
3 2 adantl x 1 +∞ k 1 x k
4 3 nnrpd x 1 +∞ k 1 x k +
5 4 relogcld x 1 +∞ k 1 x log k
6 5 3 nndivred x 1 +∞ k 1 x log k k
7 1 6 fsumrecl x 1 +∞ k = 1 x log k k
8 7 recnd x 1 +∞ k = 1 x log k k
9 elioore x 1 +∞ x
10 9 adantl x 1 +∞ x
11 1rp 1 +
12 11 a1i x 1 +∞ 1 +
13 1red x 1 +∞ 1
14 eliooord x 1 +∞ 1 < x x < +∞
15 14 adantl x 1 +∞ 1 < x x < +∞
16 15 simpld x 1 +∞ 1 < x
17 13 10 16 ltled x 1 +∞ 1 x
18 10 12 17 rpgecld x 1 +∞ x +
19 18 relogcld x 1 +∞ log x
20 19 resqcld x 1 +∞ log x 2
21 20 rehalfcld x 1 +∞ log x 2 2
22 21 recnd x 1 +∞ log x 2 2
23 19 recnd x 1 +∞ log x
24 10 16 rplogcld x 1 +∞ log x +
25 24 rpne0d x 1 +∞ log x 0
26 8 22 23 25 divsubdird x 1 +∞ k = 1 x log k k log x 2 2 log x = k = 1 x log k k log x log x 2 2 log x
27 7 21 resubcld x 1 +∞ k = 1 x log k k log x 2 2
28 27 recnd x 1 +∞ k = 1 x log k k log x 2 2
29 28 23 25 divrecd x 1 +∞ k = 1 x log k k log x 2 2 log x = k = 1 x log k k log x 2 2 1 log x
30 20 recnd x 1 +∞ log x 2
31 2cnd x 1 +∞ 2
32 2ne0 2 0
33 32 a1i x 1 +∞ 2 0
34 30 31 23 33 25 divdiv32d x 1 +∞ log x 2 2 log x = log x 2 log x 2
35 23 sqvald x 1 +∞ log x 2 = log x log x
36 35 oveq1d x 1 +∞ log x 2 log x = log x log x log x
37 23 23 25 divcan3d x 1 +∞ log x log x log x = log x
38 36 37 eqtrd x 1 +∞ log x 2 log x = log x
39 38 oveq1d x 1 +∞ log x 2 log x 2 = log x 2
40 34 39 eqtrd x 1 +∞ log x 2 2 log x = log x 2
41 40 oveq2d x 1 +∞ k = 1 x log k k log x log x 2 2 log x = k = 1 x log k k log x log x 2
42 26 29 41 3eqtr3rd x 1 +∞ k = 1 x log k k log x log x 2 = k = 1 x log k k log x 2 2 1 log x
43 42 mpteq2dva x 1 +∞ k = 1 x log k k log x log x 2 = x 1 +∞ k = 1 x log k k log x 2 2 1 log x
44 24 rprecred x 1 +∞ 1 log x
45 18 ex x 1 +∞ x +
46 45 ssrdv 1 +∞ +
47 eqid x + k = 1 x log k k log x 2 2 = x + k = 1 x log k k log x 2 2
48 47 logdivsum x + k = 1 x log k k log x 2 2 : + x + k = 1 x log k k log x 2 2 dom x + k = 1 x log k k log x 2 2 1 1 + e 1 x + k = 1 x log k k log x 2 2 1 1 log 1 1
49 48 simp2i x + k = 1 x log k k log x 2 2 dom
50 rlimdmo1 x + k = 1 x log k k log x 2 2 dom x + k = 1 x log k k log x 2 2 𝑂1
51 49 50 mp1i x + k = 1 x log k k log x 2 2 𝑂1
52 46 51 o1res2 x 1 +∞ k = 1 x log k k log x 2 2 𝑂1
53 divlogrlim x 1 +∞ 1 log x 0
54 rlimo1 x 1 +∞ 1 log x 0 x 1 +∞ 1 log x 𝑂1
55 53 54 mp1i x 1 +∞ 1 log x 𝑂1
56 27 44 52 55 o1mul2 x 1 +∞ k = 1 x log k k log x 2 2 1 log x 𝑂1
57 43 56 eqeltrd x 1 +∞ k = 1 x log k k log x log x 2 𝑂1
58 8 23 25 divcld x 1 +∞ k = 1 x log k k log x
59 23 halfcld x 1 +∞ log x 2
60 58 59 subcld x 1 +∞ k = 1 x log k k log x log x 2
61 elfznn n 1 x n
62 61 adantl x 1 +∞ n 1 x n
63 vmacl n Λ n
64 62 63 syl x 1 +∞ n 1 x Λ n
65 64 62 nndivred x 1 +∞ n 1 x Λ n n
66 18 adantr x 1 +∞ n 1 x x +
67 62 nnrpd x 1 +∞ n 1 x n +
68 66 67 rpdivcld x 1 +∞ n 1 x x n +
69 68 relogcld x 1 +∞ n 1 x log x n
70 65 69 remulcld x 1 +∞ n 1 x Λ n n log x n
71 1 70 fsumrecl x 1 +∞ n = 1 x Λ n n log x n
72 71 recnd x 1 +∞ n = 1 x Λ n n log x n
73 24 rpcnd x 1 +∞ log x
74 72 73 25 divcld x 1 +∞ n = 1 x Λ n n log x n log x
75 73 halfcld x 1 +∞ log x 2
76 74 75 subcld x 1 +∞ n = 1 x Λ n n log x n log x log x 2
77 58 74 59 nnncan2d x 1 +∞ k = 1 x log k k log x - log x 2 - n = 1 x Λ n n log x n log x log x 2 = k = 1 x log k k log x n = 1 x Λ n n log x n log x
78 8 72 23 25 divsubdird x 1 +∞ k = 1 x log k k n = 1 x Λ n n log x n log x = k = 1 x log k k log x n = 1 x Λ n n log x n log x
79 fzfid x 1 +∞ n 1 x 1 x n Fin
80 64 adantr x 1 +∞ n 1 x m 1 x n Λ n
81 62 adantr x 1 +∞ n 1 x m 1 x n n
82 elfznn m 1 x n m
83 82 adantl x 1 +∞ n 1 x m 1 x n m
84 81 83 nnmulcld x 1 +∞ n 1 x m 1 x n n m
85 80 84 nndivred x 1 +∞ n 1 x m 1 x n Λ n n m
86 79 85 fsumrecl x 1 +∞ n 1 x m = 1 x n Λ n n m
87 86 recnd x 1 +∞ n 1 x m = 1 x n Λ n n m
88 70 recnd x 1 +∞ n 1 x Λ n n log x n
89 1 87 88 fsumsub x 1 +∞ n = 1 x m = 1 x n Λ n n m Λ n n log x n = n = 1 x m = 1 x n Λ n n m n = 1 x Λ n n log x n
90 64 recnd x 1 +∞ n 1 x Λ n
91 62 nncnd x 1 +∞ n 1 x n
92 62 nnne0d x 1 +∞ n 1 x n 0
93 90 91 92 divcld x 1 +∞ n 1 x Λ n n
94 83 nnrecred x 1 +∞ n 1 x m 1 x n 1 m
95 79 94 fsumrecl x 1 +∞ n 1 x m = 1 x n 1 m
96 95 recnd x 1 +∞ n 1 x m = 1 x n 1 m
97 69 recnd x 1 +∞ n 1 x log x n
98 93 96 97 subdid x 1 +∞ n 1 x Λ n n m = 1 x n 1 m log x n = Λ n n m = 1 x n 1 m Λ n n log x n
99 90 adantr x 1 +∞ n 1 x m 1 x n Λ n
100 91 adantr x 1 +∞ n 1 x m 1 x n n
101 83 nncnd x 1 +∞ n 1 x m 1 x n m
102 92 adantr x 1 +∞ n 1 x m 1 x n n 0
103 83 nnne0d x 1 +∞ n 1 x m 1 x n m 0
104 99 100 101 102 103 divdiv1d x 1 +∞ n 1 x m 1 x n Λ n n m = Λ n n m
105 99 100 102 divcld x 1 +∞ n 1 x m 1 x n Λ n n
106 105 101 103 divrecd x 1 +∞ n 1 x m 1 x n Λ n n m = Λ n n 1 m
107 104 106 eqtr3d x 1 +∞ n 1 x m 1 x n Λ n n m = Λ n n 1 m
108 107 sumeq2dv x 1 +∞ n 1 x m = 1 x n Λ n n m = m = 1 x n Λ n n 1 m
109 101 103 reccld x 1 +∞ n 1 x m 1 x n 1 m
110 79 93 109 fsummulc2 x 1 +∞ n 1 x Λ n n m = 1 x n 1 m = m = 1 x n Λ n n 1 m
111 108 110 eqtr4d x 1 +∞ n 1 x m = 1 x n Λ n n m = Λ n n m = 1 x n 1 m
112 111 oveq1d x 1 +∞ n 1 x m = 1 x n Λ n n m Λ n n log x n = Λ n n m = 1 x n 1 m Λ n n log x n
113 98 112 eqtr4d x 1 +∞ n 1 x Λ n n m = 1 x n 1 m log x n = m = 1 x n Λ n n m Λ n n log x n
114 113 sumeq2dv x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n = n = 1 x m = 1 x n Λ n n m Λ n n log x n
115 vmasum k n y | y k Λ n = log k
116 3 115 syl x 1 +∞ k 1 x n y | y k Λ n = log k
117 116 oveq1d x 1 +∞ k 1 x n y | y k Λ n k = log k k
118 fzfid x 1 +∞ k 1 x 1 k Fin
119 dvdsssfz1 k y | y k 1 k
120 3 119 syl x 1 +∞ k 1 x y | y k 1 k
121 118 120 ssfid x 1 +∞ k 1 x y | y k Fin
122 3 nncnd x 1 +∞ k 1 x k
123 ssrab2 y | y k
124 simprr x 1 +∞ k 1 x n y | y k n y | y k
125 123 124 sselid x 1 +∞ k 1 x n y | y k n
126 125 63 syl x 1 +∞ k 1 x n y | y k Λ n
127 126 recnd x 1 +∞ k 1 x n y | y k Λ n
128 127 anassrs x 1 +∞ k 1 x n y | y k Λ n
129 3 nnne0d x 1 +∞ k 1 x k 0
130 121 122 128 129 fsumdivc x 1 +∞ k 1 x n y | y k Λ n k = n y | y k Λ n k
131 117 130 eqtr3d x 1 +∞ k 1 x log k k = n y | y k Λ n k
132 131 sumeq2dv x 1 +∞ k = 1 x log k k = k = 1 x n y | y k Λ n k
133 oveq2 k = n m Λ n k = Λ n n m
134 2 ad2antrl x 1 +∞ k 1 x n y | y k k
135 134 nncnd x 1 +∞ k 1 x n y | y k k
136 134 nnne0d x 1 +∞ k 1 x n y | y k k 0
137 127 135 136 divcld x 1 +∞ k 1 x n y | y k Λ n k
138 133 10 137 dvdsflsumcom x 1 +∞ k = 1 x n y | y k Λ n k = n = 1 x m = 1 x n Λ n n m
139 132 138 eqtrd x 1 +∞ k = 1 x log k k = n = 1 x m = 1 x n Λ n n m
140 139 oveq1d x 1 +∞ k = 1 x log k k n = 1 x Λ n n log x n = n = 1 x m = 1 x n Λ n n m n = 1 x Λ n n log x n
141 89 114 140 3eqtr4rd x 1 +∞ k = 1 x log k k n = 1 x Λ n n log x n = n = 1 x Λ n n m = 1 x n 1 m log x n
142 141 oveq1d x 1 +∞ k = 1 x log k k n = 1 x Λ n n log x n log x = n = 1 x Λ n n m = 1 x n 1 m log x n log x
143 77 78 142 3eqtr2d x 1 +∞ k = 1 x log k k log x - log x 2 - n = 1 x Λ n n log x n log x log x 2 = n = 1 x Λ n n m = 1 x n 1 m log x n log x
144 143 mpteq2dva x 1 +∞ k = 1 x log k k log x - log x 2 - n = 1 x Λ n n log x n log x log x 2 = x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n log x
145 1red 1
146 1 65 fsumrecl x 1 +∞ n = 1 x Λ n n
147 146 24 rerpdivcld x 1 +∞ n = 1 x Λ n n log x
148 ioossre 1 +∞
149 ax-1cn 1
150 o1const 1 +∞ 1 x 1 +∞ 1 𝑂1
151 148 149 150 mp2an x 1 +∞ 1 𝑂1
152 151 a1i x 1 +∞ 1 𝑂1
153 147 recnd x 1 +∞ n = 1 x Λ n n log x
154 12 rpcnd x 1 +∞ 1
155 146 recnd x 1 +∞ n = 1 x Λ n n
156 155 23 23 25 divsubdird x 1 +∞ n = 1 x Λ n n log x log x = n = 1 x Λ n n log x log x log x
157 155 23 subcld x 1 +∞ n = 1 x Λ n n log x
158 157 23 25 divrecd x 1 +∞ n = 1 x Λ n n log x log x = n = 1 x Λ n n log x 1 log x
159 23 25 dividd x 1 +∞ log x log x = 1
160 159 oveq2d x 1 +∞ n = 1 x Λ n n log x log x log x = n = 1 x Λ n n log x 1
161 156 158 160 3eqtr3rd x 1 +∞ n = 1 x Λ n n log x 1 = n = 1 x Λ n n log x 1 log x
162 161 mpteq2dva x 1 +∞ n = 1 x Λ n n log x 1 = x 1 +∞ n = 1 x Λ n n log x 1 log x
163 146 19 resubcld x 1 +∞ n = 1 x Λ n n log x
164 vmadivsum x + n = 1 x Λ n n log x 𝑂1
165 164 a1i x + n = 1 x Λ n n log x 𝑂1
166 46 165 o1res2 x 1 +∞ n = 1 x Λ n n log x 𝑂1
167 163 44 166 55 o1mul2 x 1 +∞ n = 1 x Λ n n log x 1 log x 𝑂1
168 162 167 eqeltrd x 1 +∞ n = 1 x Λ n n log x 1 𝑂1
169 153 154 168 o1dif x 1 +∞ n = 1 x Λ n n log x 𝑂1 x 1 +∞ 1 𝑂1
170 152 169 mpbird x 1 +∞ n = 1 x Λ n n log x 𝑂1
171 147 170 o1lo1d x 1 +∞ n = 1 x Λ n n log x 𝑂1
172 95 69 resubcld x 1 +∞ n 1 x m = 1 x n 1 m log x n
173 65 172 remulcld x 1 +∞ n 1 x Λ n n m = 1 x n 1 m log x n
174 1 173 fsumrecl x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n
175 174 24 rerpdivcld x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n log x
176 1red x 1 +∞ n 1 x 1
177 vmage0 n 0 Λ n
178 62 177 syl x 1 +∞ n 1 x 0 Λ n
179 64 67 178 divge0d x 1 +∞ n 1 x 0 Λ n n
180 68 rpred x 1 +∞ n 1 x x n
181 91 mulid2d x 1 +∞ n 1 x 1 n = n
182 fznnfl x n 1 x n n x
183 10 182 syl x 1 +∞ n 1 x n n x
184 183 simplbda x 1 +∞ n 1 x n x
185 181 184 eqbrtrd x 1 +∞ n 1 x 1 n x
186 10 adantr x 1 +∞ n 1 x x
187 176 186 67 lemuldivd x 1 +∞ n 1 x 1 n x 1 x n
188 185 187 mpbid x 1 +∞ n 1 x 1 x n
189 harmonicubnd x n 1 x n m = 1 x n 1 m log x n + 1
190 180 188 189 syl2anc x 1 +∞ n 1 x m = 1 x n 1 m log x n + 1
191 95 69 176 lesubadd2d x 1 +∞ n 1 x m = 1 x n 1 m log x n 1 m = 1 x n 1 m log x n + 1
192 190 191 mpbird x 1 +∞ n 1 x m = 1 x n 1 m log x n 1
193 172 176 65 179 192 lemul2ad x 1 +∞ n 1 x Λ n n m = 1 x n 1 m log x n Λ n n 1
194 93 mulid1d x 1 +∞ n 1 x Λ n n 1 = Λ n n
195 193 194 breqtrd x 1 +∞ n 1 x Λ n n m = 1 x n 1 m log x n Λ n n
196 1 173 65 195 fsumle x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n n = 1 x Λ n n
197 174 146 24 196 lediv1dd x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n log x n = 1 x Λ n n log x
198 197 adantrr x 1 +∞ 1 x n = 1 x Λ n n m = 1 x n 1 m log x n log x n = 1 x Λ n n log x
199 145 171 147 175 198 lo1le x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n log x 𝑂1
200 0red 0
201 harmoniclbnd x n + log x n m = 1 x n 1 m
202 68 201 syl x 1 +∞ n 1 x log x n m = 1 x n 1 m
203 95 69 subge0d x 1 +∞ n 1 x 0 m = 1 x n 1 m log x n log x n m = 1 x n 1 m
204 202 203 mpbird x 1 +∞ n 1 x 0 m = 1 x n 1 m log x n
205 65 172 179 204 mulge0d x 1 +∞ n 1 x 0 Λ n n m = 1 x n 1 m log x n
206 1 173 205 fsumge0 x 1 +∞ 0 n = 1 x Λ n n m = 1 x n 1 m log x n
207 174 24 206 divge0d x 1 +∞ 0 n = 1 x Λ n n m = 1 x n 1 m log x n log x
208 175 200 207 o1lo12 x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n log x 𝑂1 x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n log x 𝑂1
209 199 208 mpbird x 1 +∞ n = 1 x Λ n n m = 1 x n 1 m log x n log x 𝑂1
210 144 209 eqeltrd x 1 +∞ k = 1 x log k k log x - log x 2 - n = 1 x Λ n n log x n log x log x 2 𝑂1
211 60 76 210 o1dif x 1 +∞ k = 1 x log k k log x log x 2 𝑂1 x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
212 57 211 mpbid x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
213 212 mptru x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1