Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|
2 |
|
nnnn0 |
|
3 |
|
nnexpcl |
|
4 |
1 2 3
|
syl2an |
|
5 |
|
eqid |
|
6 |
5
|
vmaval |
|
7 |
4 6
|
syl |
|
8 |
|
df-rab |
|
9 |
|
prmdvdsexpb |
|
10 |
9
|
biimpd |
|
11 |
10
|
3coml |
|
12 |
11
|
3expa |
|
13 |
12
|
expimpd |
|
14 |
|
simpl |
|
15 |
|
prmz |
|
16 |
|
iddvdsexp |
|
17 |
15 16
|
sylan |
|
18 |
14 17
|
jca |
|
19 |
|
eleq1 |
|
20 |
|
breq1 |
|
21 |
19 20
|
anbi12d |
|
22 |
18 21
|
syl5ibrcom |
|
23 |
13 22
|
impbid |
|
24 |
|
velsn |
|
25 |
23 24
|
bitr4di |
|
26 |
25
|
abbi1dv |
|
27 |
8 26
|
syl5eq |
|
28 |
27
|
fveq2d |
|
29 |
|
hashsng |
|
30 |
29
|
adantr |
|
31 |
28 30
|
eqtrd |
|
32 |
31
|
iftrued |
|
33 |
27
|
unieqd |
|
34 |
|
unisng |
|
35 |
34
|
adantr |
|
36 |
33 35
|
eqtrd |
|
37 |
36
|
fveq2d |
|
38 |
7 32 37
|
3eqtrd |
|