Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
|
fzfid |
|
3 |
|
dvdsssfz1 |
|
4 |
2 3
|
ssfid |
|
5 |
|
ssrab2 |
|
6 |
5
|
a1i |
|
7 |
|
inss1 |
|
8 |
|
ssfi |
|
9 |
2 7 8
|
sylancl |
|
10 |
|
pccl |
|
11 |
10
|
ancoms |
|
12 |
11
|
nn0zd |
|
13 |
|
fznn |
|
14 |
12 13
|
syl |
|
15 |
14
|
anbi2d |
|
16 |
|
an12 |
|
17 |
|
prmz |
|
18 |
17
|
adantl |
|
19 |
|
iddvdsexp |
|
20 |
18 19
|
sylan |
|
21 |
17
|
ad2antlr |
|
22 |
|
prmnn |
|
23 |
22
|
adantl |
|
24 |
|
nnnn0 |
|
25 |
|
nnexpcl |
|
26 |
23 24 25
|
syl2an |
|
27 |
26
|
nnzd |
|
28 |
|
nnz |
|
29 |
28
|
ad2antrr |
|
30 |
|
dvdstr |
|
31 |
21 27 29 30
|
syl3anc |
|
32 |
20 31
|
mpand |
|
33 |
|
simpll |
|
34 |
|
dvdsle |
|
35 |
21 33 34
|
syl2anc |
|
36 |
32 35
|
syld |
|
37 |
22
|
ad2antlr |
|
38 |
|
fznn |
|
39 |
38
|
baibd |
|
40 |
29 37 39
|
syl2anc |
|
41 |
36 40
|
sylibrd |
|
42 |
41
|
pm4.71rd |
|
43 |
|
breq1 |
|
44 |
43
|
elrab3 |
|
45 |
26 44
|
syl |
|
46 |
|
simplr |
|
47 |
24
|
adantl |
|
48 |
|
pcdvdsb |
|
49 |
46 29 47 48
|
syl3anc |
|
50 |
49
|
anbi2d |
|
51 |
42 45 50
|
3bitr4rd |
|
52 |
51
|
pm5.32da |
|
53 |
16 52
|
syl5bb |
|
54 |
15 53
|
bitrd |
|
55 |
54
|
pm5.32da |
|
56 |
|
elin |
|
57 |
56
|
anbi1i |
|
58 |
|
anass |
|
59 |
|
an12 |
|
60 |
57 58 59
|
3bitri |
|
61 |
|
anass |
|
62 |
55 60 61
|
3bitr4g |
|
63 |
6
|
sselda |
|
64 |
|
vmacl |
|
65 |
63 64
|
syl |
|
66 |
65
|
recnd |
|
67 |
|
simprr |
|
68 |
1 4 6 9 62 66 67
|
fsumvma |
|
69 |
|
elinel2 |
|
70 |
69
|
ad2antlr |
|
71 |
|
elfznn |
|
72 |
71
|
adantl |
|
73 |
|
vmappw |
|
74 |
70 72 73
|
syl2anc |
|
75 |
74
|
sumeq2dv |
|
76 |
|
fzfid |
|
77 |
69 22
|
syl |
|
78 |
77
|
adantl |
|
79 |
78
|
nnrpd |
|
80 |
79
|
relogcld |
|
81 |
80
|
recnd |
|
82 |
|
fsumconst |
|
83 |
76 81 82
|
syl2anc |
|
84 |
69 11
|
sylan2 |
|
85 |
|
hashfz1 |
|
86 |
84 85
|
syl |
|
87 |
86
|
oveq1d |
|
88 |
75 83 87
|
3eqtrd |
|
89 |
88
|
sumeq2dv |
|
90 |
|
pclogsum |
|
91 |
68 89 90
|
3eqtrd |
|