Metamath Proof Explorer


Theorem vmasum

Description: The sum of the von Mangoldt function over the divisors of n . Equation 9.2.4 of Shapiro, p. 328 and theorem 2.10 in ApostolNT p. 32. (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Assertion vmasum A n x | x A Λ n = log A

Proof

Step Hyp Ref Expression
1 fveq2 n = p k Λ n = Λ p k
2 fzfid A 1 A Fin
3 dvdsssfz1 A x | x A 1 A
4 2 3 ssfid A x | x A Fin
5 ssrab2 x | x A
6 5 a1i A x | x A
7 inss1 1 A 1 A
8 ssfi 1 A Fin 1 A 1 A 1 A Fin
9 2 7 8 sylancl A 1 A Fin
10 pccl p A p pCnt A 0
11 10 ancoms A p p pCnt A 0
12 11 nn0zd A p p pCnt A
13 fznn p pCnt A k 1 p pCnt A k k p pCnt A
14 12 13 syl A p k 1 p pCnt A k k p pCnt A
15 14 anbi2d A p p 1 A k 1 p pCnt A p 1 A k k p pCnt A
16 an12 p 1 A k k p pCnt A k p 1 A k p pCnt A
17 prmz p p
18 17 adantl A p p
19 iddvdsexp p k p p k
20 18 19 sylan A p k p p k
21 17 ad2antlr A p k p
22 prmnn p p
23 22 adantl A p p
24 nnnn0 k k 0
25 nnexpcl p k 0 p k
26 23 24 25 syl2an A p k p k
27 26 nnzd A p k p k
28 nnz A A
29 28 ad2antrr A p k A
30 dvdstr p p k A p p k p k A p A
31 21 27 29 30 syl3anc A p k p p k p k A p A
32 20 31 mpand A p k p k A p A
33 simpll A p k A
34 dvdsle p A p A p A
35 21 33 34 syl2anc A p k p A p A
36 32 35 syld A p k p k A p A
37 22 ad2antlr A p k p
38 fznn A p 1 A p p A
39 38 baibd A p p 1 A p A
40 29 37 39 syl2anc A p k p 1 A p A
41 36 40 sylibrd A p k p k A p 1 A
42 41 pm4.71rd A p k p k A p 1 A p k A
43 breq1 x = p k x A p k A
44 43 elrab3 p k p k x | x A p k A
45 26 44 syl A p k p k x | x A p k A
46 simplr A p k p
47 24 adantl A p k k 0
48 pcdvdsb p A k 0 k p pCnt A p k A
49 46 29 47 48 syl3anc A p k k p pCnt A p k A
50 49 anbi2d A p k p 1 A k p pCnt A p 1 A p k A
51 42 45 50 3bitr4rd A p k p 1 A k p pCnt A p k x | x A
52 51 pm5.32da A p k p 1 A k p pCnt A k p k x | x A
53 16 52 syl5bb A p p 1 A k k p pCnt A k p k x | x A
54 15 53 bitrd A p p 1 A k 1 p pCnt A k p k x | x A
55 54 pm5.32da A p p 1 A k 1 p pCnt A p k p k x | x A
56 elin p 1 A p 1 A p
57 56 anbi1i p 1 A k 1 p pCnt A p 1 A p k 1 p pCnt A
58 anass p 1 A p k 1 p pCnt A p 1 A p k 1 p pCnt A
59 an12 p 1 A p k 1 p pCnt A p p 1 A k 1 p pCnt A
60 57 58 59 3bitri p 1 A k 1 p pCnt A p p 1 A k 1 p pCnt A
61 anass p k p k x | x A p k p k x | x A
62 55 60 61 3bitr4g A p 1 A k 1 p pCnt A p k p k x | x A
63 6 sselda A n x | x A n
64 vmacl n Λ n
65 63 64 syl A n x | x A Λ n
66 65 recnd A n x | x A Λ n
67 simprr A n x | x A Λ n = 0 Λ n = 0
68 1 4 6 9 62 66 67 fsumvma A n x | x A Λ n = p 1 A k = 1 p pCnt A Λ p k
69 elinel2 p 1 A p
70 69 ad2antlr A p 1 A k 1 p pCnt A p
71 elfznn k 1 p pCnt A k
72 71 adantl A p 1 A k 1 p pCnt A k
73 vmappw p k Λ p k = log p
74 70 72 73 syl2anc A p 1 A k 1 p pCnt A Λ p k = log p
75 74 sumeq2dv A p 1 A k = 1 p pCnt A Λ p k = k = 1 p pCnt A log p
76 fzfid A p 1 A 1 p pCnt A Fin
77 69 22 syl p 1 A p
78 77 adantl A p 1 A p
79 78 nnrpd A p 1 A p +
80 79 relogcld A p 1 A log p
81 80 recnd A p 1 A log p
82 fsumconst 1 p pCnt A Fin log p k = 1 p pCnt A log p = 1 p pCnt A log p
83 76 81 82 syl2anc A p 1 A k = 1 p pCnt A log p = 1 p pCnt A log p
84 69 11 sylan2 A p 1 A p pCnt A 0
85 hashfz1 p pCnt A 0 1 p pCnt A = p pCnt A
86 84 85 syl A p 1 A 1 p pCnt A = p pCnt A
87 86 oveq1d A p 1 A 1 p pCnt A log p = p pCnt A log p
88 75 83 87 3eqtrd A p 1 A k = 1 p pCnt A Λ p k = p pCnt A log p
89 88 sumeq2dv A p 1 A k = 1 p pCnt A Λ p k = p 1 A p pCnt A log p
90 pclogsum A p 1 A p pCnt A log p = log A
91 68 89 90 3eqtrd A n x | x A Λ n = log A