Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
vmaval
Next ⟩
isppw
Metamath Proof Explorer
Ascii
Unicode
Theorem
vmaval
Description:
Value of the von Mangoldt function.
(Contributed by
Mario Carneiro
, 7-Apr-2016)
Ref
Expression
Hypothesis
vmaval.1
⊢
S
=
p
∈
ℙ
|
p
∥
A
Assertion
vmaval
⊢
A
∈
ℕ
→
Λ
⁡
A
=
if
S
=
1
log
⁡
⋃
S
0
Proof
Step
Hyp
Ref
Expression
1
vmaval.1
⊢
S
=
p
∈
ℙ
|
p
∥
A
2
prmex
⊢
ℙ
∈
V
3
2
rabex
⊢
p
∈
ℙ
|
p
∥
x
∈
V
4
3
a1i
⊢
x
=
A
→
p
∈
ℙ
|
p
∥
x
∈
V
5
id
⊢
s
=
p
∈
ℙ
|
p
∥
x
→
s
=
p
∈
ℙ
|
p
∥
x
6
breq2
⊢
x
=
A
→
p
∥
x
↔
p
∥
A
7
6
rabbidv
⊢
x
=
A
→
p
∈
ℙ
|
p
∥
x
=
p
∈
ℙ
|
p
∥
A
8
7
1
eqtr4di
⊢
x
=
A
→
p
∈
ℙ
|
p
∥
x
=
S
9
5
8
sylan9eqr
⊢
x
=
A
∧
s
=
p
∈
ℙ
|
p
∥
x
→
s
=
S
10
9
fveqeq2d
⊢
x
=
A
∧
s
=
p
∈
ℙ
|
p
∥
x
→
s
=
1
↔
S
=
1
11
9
unieqd
⊢
x
=
A
∧
s
=
p
∈
ℙ
|
p
∥
x
→
⋃
s
=
⋃
S
12
11
fveq2d
⊢
x
=
A
∧
s
=
p
∈
ℙ
|
p
∥
x
→
log
⁡
⋃
s
=
log
⁡
⋃
S
13
10
12
ifbieq1d
⊢
x
=
A
∧
s
=
p
∈
ℙ
|
p
∥
x
→
if
s
=
1
log
⁡
⋃
s
0
=
if
S
=
1
log
⁡
⋃
S
0
14
4
13
csbied
⊢
x
=
A
→
⦋
p
∈
ℙ
|
p
∥
x
/
s
⦌
if
s
=
1
log
⁡
⋃
s
0
=
if
S
=
1
log
⁡
⋃
S
0
15
df-vma
⊢
Λ
=
x
∈
ℕ
⟼
⦋
p
∈
ℙ
|
p
∥
x
/
s
⦌
if
s
=
1
log
⁡
⋃
s
0
16
fvex
⊢
log
⁡
⋃
S
∈
V
17
c0ex
⊢
0
∈
V
18
16
17
ifex
⊢
if
S
=
1
log
⁡
⋃
S
0
∈
V
19
14
15
18
fvmpt
⊢
A
∈
ℕ
→
Λ
⁡
A
=
if
S
=
1
log
⁡
⋃
S
0