Metamath Proof Explorer


Theorem vn0

Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Assertion vn0 V

Proof

Step Hyp Ref Expression
1 fal ¬
2 pm5.501
3 2 mptru
4 1 3 mtbi ¬
5 4 exgen y ¬
6 exnal y ¬ ¬ y
7 5 6 mpbi ¬ y
8 df-clab y x | y x
9 sbv y x
10 8 9 bitr2i y x |
11 df-clab y x | y x
12 sbv y x
13 11 12 bitr2i y x |
14 10 13 bibi12i y x | y x |
15 14 albii y y y x | y x |
16 7 15 mtbi ¬ y y x | y x |
17 dfcleq x | = x | y y x | y x |
18 dfv2 V = x |
19 18 eqcomi x | = V
20 dfnul4 = x |
21 20 eqcomi x | =
22 19 21 eqeq12i x | = x | V =
23 17 22 bitr3i y y x | y x | V =
24 16 23 mtbi ¬ V =
25 24 neir V