Metamath Proof Explorer


Theorem vnex

Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005)

Ref Expression
Assertion vnex ¬ x x = V

Proof

Step Hyp Ref Expression
1 nalset ¬ x y y x
2 vex y V
3 2 tbt y x y x y V
4 3 albii y y x y y x y V
5 dfcleq x = V y y x y V
6 4 5 bitr4i y y x x = V
7 6 exbii x y y x x x = V
8 1 7 mtbi ¬ x x = V