Metamath Proof Explorer


Theorem volf

Description: The domain and range of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion volf vol : dom vol 0 +∞

Proof

Step Hyp Ref Expression
1 ovolf vol * : 𝒫 0 +∞
2 ffun vol * : 𝒫 0 +∞ Fun vol *
3 funres Fun vol * Fun vol * dom vol
4 1 2 3 mp2b Fun vol * dom vol
5 volres vol = vol * dom vol
6 5 funeqi Fun vol Fun vol * dom vol
7 4 6 mpbir Fun vol
8 resss vol * dom vol vol *
9 5 8 eqsstri vol vol *
10 fssxp vol * : 𝒫 0 +∞ vol * 𝒫 × 0 +∞
11 1 10 ax-mp vol * 𝒫 × 0 +∞
12 9 11 sstri vol 𝒫 × 0 +∞
13 7 12 pm3.2i Fun vol vol 𝒫 × 0 +∞
14 funssxp Fun vol vol 𝒫 × 0 +∞ vol : dom vol 0 +∞ dom vol 𝒫
15 13 14 mpbi vol : dom vol 0 +∞ dom vol 𝒫
16 15 simpli vol : dom vol 0 +∞