Metamath Proof Explorer


Theorem volicc

Description: The Lebesgue measure of a closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion volicc A B A B vol A B = B A

Proof

Step Hyp Ref Expression
1 iccmbl A B A B dom vol
2 mblvol A B dom vol vol A B = vol * A B
3 1 2 syl A B vol A B = vol * A B
4 3 3adant3 A B A B vol A B = vol * A B
5 ovolicc A B A B vol * A B = B A
6 4 5 eqtrd A B A B vol A B = B A