Metamath Proof Explorer


Theorem volico

Description: The measure of left-closed, right-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion volico A B vol A B = if A < B B A 0

Proof

Step Hyp Ref Expression
1 rexr A A *
2 1 3ad2ant1 A B A < B A *
3 rexr B B *
4 3 3ad2ant2 A B A < B B *
5 simp3 A B A < B A < B
6 snunioo1 A * B * A < B A B A = A B
7 2 4 5 6 syl3anc A B A < B A B A = A B
8 7 eqcomd A B A < B A B = A B A
9 8 fveq2d A B A < B vol A B = vol A B A
10 ioombl A B dom vol
11 10 a1i A B A < B A B dom vol
12 snmbl A A dom vol
13 12 3ad2ant1 A B A < B A dom vol
14 lbioo ¬ A A B
15 disjsn A B A = ¬ A A B
16 14 15 mpbir A B A =
17 16 a1i A B A < B A B A =
18 ioovolcl A B vol A B
19 18 3adant3 A B A < B vol A B
20 volsn A vol A = 0
21 0red A 0
22 20 21 eqeltrd A vol A
23 22 3ad2ant1 A B A < B vol A
24 volun A B dom vol A dom vol A B A = vol A B vol A vol A B A = vol A B + vol A
25 11 13 17 19 23 24 syl32anc A B A < B vol A B A = vol A B + vol A
26 simp1 A B A < B A
27 simp2 A B A < B B
28 26 27 5 ltled A B A < B A B
29 volioo A B A B vol A B = B A
30 26 27 28 29 syl3anc A B A < B vol A B = B A
31 20 3ad2ant1 A B A < B vol A = 0
32 30 31 oveq12d A B A < B vol A B + vol A = B - A + 0
33 27 recnd A B A < B B
34 recn A A
35 34 3ad2ant1 A B A < B A
36 33 35 subcld A B A < B B A
37 36 addid1d A B A < B B - A + 0 = B A
38 32 37 eqtrd A B A < B vol A B + vol A = B A
39 9 25 38 3eqtrd A B A < B vol A B = B A
40 39 3expa A B A < B vol A B = B A
41 iftrue A < B if A < B B A 0 = B A
42 41 adantl A B A < B if A < B B A 0 = B A
43 40 42 eqtr4d A B A < B vol A B = if A < B B A 0
44 simpl A B ¬ A < B A B
45 simpr A B ¬ A < B ¬ A < B
46 44 simprd A B ¬ A < B B
47 44 simpld A B ¬ A < B A
48 46 47 lenltd A B ¬ A < B B A ¬ A < B
49 45 48 mpbird A B ¬ A < B B A
50 simpr A B B A B A
51 1 ad2antrr A B B A A *
52 3 ad2antlr A B B A B *
53 ico0 A * B * A B = B A
54 51 52 53 syl2anc A B B A A B = B A
55 50 54 mpbird A B B A A B =
56 55 fveq2d A B B A vol A B = vol
57 vol0 vol = 0
58 57 a1i A B B A vol = 0
59 56 58 eqtrd A B B A vol A B = 0
60 44 49 59 syl2anc A B ¬ A < B vol A B = 0
61 iffalse ¬ A < B if A < B B A 0 = 0
62 61 adantl A B ¬ A < B if A < B B A 0 = 0
63 60 62 eqtr4d A B ¬ A < B vol A B = if A < B B A 0
64 43 63 pm2.61dan A B vol A B = if A < B B A 0