Metamath Proof Explorer


Theorem volicoff

Description: ( ( vol o. [,) ) o. F ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis volicoff.1 φ F : A × *
Assertion volicoff φ vol . F : A 0 +∞

Proof

Step Hyp Ref Expression
1 volicoff.1 φ F : A × *
2 volf vol : dom vol 0 +∞
3 2 a1i φ vol : dom vol 0 +∞
4 icof . : * × * 𝒫 *
5 4 a1i φ . : * × * 𝒫 *
6 ressxr *
7 xpss1 * × * * × *
8 6 7 ax-mp × * * × *
9 8 a1i φ × * * × *
10 5 9 1 fcoss φ . F : A 𝒫 *
11 10 ffnd φ . F Fn A
12 1 adantr φ x A F : A × *
13 simpr φ x A x A
14 12 13 fvovco φ x A . F x = 1 st F x 2 nd F x
15 1 ffvelrnda φ x A F x × *
16 xp1st F x × * 1 st F x
17 15 16 syl φ x A 1 st F x
18 xp2nd F x × * 2 nd F x *
19 15 18 syl φ x A 2 nd F x *
20 icombl 1 st F x 2 nd F x * 1 st F x 2 nd F x dom vol
21 17 19 20 syl2anc φ x A 1 st F x 2 nd F x dom vol
22 14 21 eqeltrd φ x A . F x dom vol
23 22 ralrimiva φ x A . F x dom vol
24 fnfvrnss . F Fn A x A . F x dom vol ran . F dom vol
25 11 23 24 syl2anc φ ran . F dom vol
26 ffrn . F : A 𝒫 * . F : A ran . F
27 10 26 syl φ . F : A ran . F
28 3 25 27 fcoss φ vol . F : A 0 +∞
29 coass vol . F = vol . F
30 29 feq1i vol . F : A 0 +∞ vol . F : A 0 +∞
31 30 a1i φ vol . F : A 0 +∞ vol . F : A 0 +∞
32 28 31 mpbird φ vol . F : A 0 +∞