Metamath Proof Explorer


Theorem volicofmpt

Description: ( ( vol o. [,) ) o. F ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses volicofmpt.1 _ x F
volicofmpt.2 φ F : A × *
Assertion volicofmpt φ vol . F = x A vol 1 st F x 2 nd F x

Proof

Step Hyp Ref Expression
1 volicofmpt.1 _ x F
2 volicofmpt.2 φ F : A × *
3 nfcv _ x A
4 nfcv _ x vol .
5 4 1 nfco _ x vol . F
6 2 volicoff φ vol . F : A 0 +∞
7 3 5 6 feqmptdf φ vol . F = x A vol . F x
8 ressxr *
9 xpss1 * × * * × *
10 8 9 ax-mp × * * × *
11 10 a1i φ × * * × *
12 2 11 fssd φ F : A * × *
13 12 adantr φ x A F : A * × *
14 simpr φ x A x A
15 13 14 fvvolicof φ x A vol . F x = vol 1 st F x 2 nd F x
16 15 mpteq2dva φ x A vol . F x = x A vol 1 st F x 2 nd F x
17 7 16 eqtrd φ vol . F = x A vol 1 st F x 2 nd F x