Metamath Proof Explorer


Theorem volinun

Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Assertion volinun A dom vol B dom vol vol A vol B vol A + vol B = vol A B + vol A B

Proof

Step Hyp Ref Expression
1 inundif A B A B = A
2 1 fveq2i vol A B A B = vol A
3 inmbl A dom vol B dom vol A B dom vol
4 3 adantr A dom vol B dom vol vol A vol B A B dom vol
5 difmbl A dom vol B dom vol A B dom vol
6 5 adantr A dom vol B dom vol vol A vol B A B dom vol
7 indifcom A B A B = A A B B
8 difin0 A B B =
9 8 ineq2i A A B B = A
10 in0 A =
11 9 10 eqtri A A B B =
12 7 11 eqtri A B A B =
13 12 a1i A dom vol B dom vol vol A vol B A B A B =
14 mblvol A B dom vol vol A B = vol * A B
15 4 14 syl A dom vol B dom vol vol A vol B vol A B = vol * A B
16 inss1 A B A
17 16 a1i A dom vol B dom vol vol A vol B A B A
18 mblss A dom vol A
19 18 ad2antrr A dom vol B dom vol vol A vol B A
20 mblvol A dom vol vol A = vol * A
21 20 ad2antrr A dom vol B dom vol vol A vol B vol A = vol * A
22 simprl A dom vol B dom vol vol A vol B vol A
23 21 22 eqeltrrd A dom vol B dom vol vol A vol B vol * A
24 ovolsscl A B A A vol * A vol * A B
25 17 19 23 24 syl3anc A dom vol B dom vol vol A vol B vol * A B
26 15 25 eqeltrd A dom vol B dom vol vol A vol B vol A B
27 mblvol A B dom vol vol A B = vol * A B
28 6 27 syl A dom vol B dom vol vol A vol B vol A B = vol * A B
29 difssd A dom vol B dom vol vol A vol B A B A
30 ovolsscl A B A A vol * A vol * A B
31 29 19 23 30 syl3anc A dom vol B dom vol vol A vol B vol * A B
32 28 31 eqeltrd A dom vol B dom vol vol A vol B vol A B
33 volun A B dom vol A B dom vol A B A B = vol A B vol A B vol A B A B = vol A B + vol A B
34 4 6 13 26 32 33 syl32anc A dom vol B dom vol vol A vol B vol A B A B = vol A B + vol A B
35 2 34 eqtr3id A dom vol B dom vol vol A vol B vol A = vol A B + vol A B
36 35 oveq1d A dom vol B dom vol vol A vol B vol A + vol B = vol A B + vol A B + vol B
37 26 recnd A dom vol B dom vol vol A vol B vol A B
38 32 recnd A dom vol B dom vol vol A vol B vol A B
39 simprr A dom vol B dom vol vol A vol B vol B
40 39 recnd A dom vol B dom vol vol A vol B vol B
41 37 38 40 addassd A dom vol B dom vol vol A vol B vol A B + vol A B + vol B = vol A B + vol A B + vol B
42 simplr A dom vol B dom vol vol A vol B B dom vol
43 disjdifr A B B =
44 43 a1i A dom vol B dom vol vol A vol B A B B =
45 volun A B dom vol B dom vol A B B = vol A B vol B vol A B B = vol A B + vol B
46 6 42 44 32 39 45 syl32anc A dom vol B dom vol vol A vol B vol A B B = vol A B + vol B
47 undif1 A B B = A B
48 47 fveq2i vol A B B = vol A B
49 46 48 eqtr3di A dom vol B dom vol vol A vol B vol A B + vol B = vol A B
50 49 oveq2d A dom vol B dom vol vol A vol B vol A B + vol A B + vol B = vol A B + vol A B
51 36 41 50 3eqtrd A dom vol B dom vol vol A vol B vol A + vol B = vol A B + vol A B