Metamath Proof Explorer


Theorem volioc

Description: The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion volioc A B A B vol A B = B A

Proof

Step Hyp Ref Expression
1 vol0 vol = 0
2 oveq2 A = B A A = A B
3 2 eqcomd A = B A B = A A
4 leid A A A
5 rexr A A *
6 ioc0 A * A * A A = A A
7 5 5 6 syl2anc A A A = A A
8 4 7 mpbird A A A =
9 3 8 sylan9eqr A A = B A B =
10 9 fveq2d A A = B vol A B = vol
11 eqcom A = B B = A
12 11 biimpi A = B B = A
13 12 adantl A A = B B = A
14 recn A A
15 14 adantr A A = B A
16 13 15 eqeltrd A A = B B
17 16 13 subeq0bd A A = B B A = 0
18 1 10 17 3eqtr4a A A = B vol A B = B A
19 18 3ad2antl1 A B A B A = B vol A B = B A
20 simpl1 A B A B ¬ A = B A
21 simpl2 A B A B ¬ A = B B
22 simpl3 A B A B ¬ A = B A B
23 eqcom B = A A = B
24 23 biimpi B = A A = B
25 24 necon3bi ¬ A = B B A
26 25 adantl A B A B ¬ A = B B A
27 20 21 22 26 leneltd A B A B ¬ A = B A < B
28 5 3ad2ant1 A B A < B A *
29 rexr B B *
30 29 3ad2ant2 A B A < B B *
31 simp3 A B A < B A < B
32 ioounsn A * B * A < B A B B = A B
33 28 30 31 32 syl3anc A B A < B A B B = A B
34 33 eqcomd A B A < B A B = A B B
35 34 fveq2d A B A < B vol A B = vol A B B
36 ioombl A B dom vol
37 36 a1i A B A < B A B dom vol
38 snmbl B B dom vol
39 38 3ad2ant2 A B A < B B dom vol
40 ubioo ¬ B A B
41 disjsn A B B = ¬ B A B
42 40 41 mpbir A B B =
43 42 a1i A B A < B A B B =
44 ioovolcl A B vol A B
45 44 3adant3 A B A < B vol A B
46 volsn B vol B = 0
47 0red B 0
48 46 47 eqeltrd B vol B
49 48 3ad2ant2 A B A < B vol B
50 volun A B dom vol B dom vol A B B = vol A B vol B vol A B B = vol A B + vol B
51 37 39 43 45 49 50 syl32anc A B A < B vol A B B = vol A B + vol B
52 simp1 A B A < B A
53 simp2 A B A < B B
54 52 53 31 ltled A B A < B A B
55 volioo A B A B vol A B = B A
56 52 53 54 55 syl3anc A B A < B vol A B = B A
57 46 3ad2ant2 A B A < B vol B = 0
58 56 57 oveq12d A B A < B vol A B + vol B = B - A + 0
59 53 recnd A B A < B B
60 14 3ad2ant1 A B A < B A
61 59 60 subcld A B A < B B A
62 61 addid1d A B A < B B - A + 0 = B A
63 58 62 eqtrd A B A < B vol A B + vol B = B A
64 35 51 63 3eqtrd A B A < B vol A B = B A
65 20 21 27 64 syl3anc A B A B ¬ A = B vol A B = B A
66 19 65 pm2.61dan A B A B vol A B = B A