Metamath Proof Explorer


Theorem volioof

Description: The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volioof vol . : * × * 0 +∞

Proof

Step Hyp Ref Expression
1 volf vol : dom vol 0 +∞
2 ioof . : * × * 𝒫
3 ffn . : * × * 𝒫 . Fn * × *
4 2 3 ax-mp . Fn * × *
5 df-ov 1 st x 2 nd x = . 1 st x 2 nd x
6 5 a1i x * × * 1 st x 2 nd x = . 1 st x 2 nd x
7 1st2nd2 x * × * x = 1 st x 2 nd x
8 7 eqcomd x * × * 1 st x 2 nd x = x
9 8 fveq2d x * × * . 1 st x 2 nd x = . x
10 6 9 eqtr2d x * × * . x = 1 st x 2 nd x
11 ioombl 1 st x 2 nd x dom vol
12 10 11 eqeltrdi x * × * . x dom vol
13 12 rgen x * × * . x dom vol
14 4 13 pm3.2i . Fn * × * x * × * . x dom vol
15 ffnfv . : * × * dom vol . Fn * × * x * × * . x dom vol
16 14 15 mpbir . : * × * dom vol
17 fco vol : dom vol 0 +∞ . : * × * dom vol vol . : * × * 0 +∞
18 1 16 17 mp2an vol . : * × * 0 +∞