Metamath Proof Explorer


Theorem volioofmpt

Description: ( ( vol o. (,) ) o. F ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses volioofmpt.x _ x F
volioofmpt.f φ F : A * × *
Assertion volioofmpt φ vol . F = x A vol 1 st F x 2 nd F x

Proof

Step Hyp Ref Expression
1 volioofmpt.x _ x F
2 volioofmpt.f φ F : A * × *
3 nfcv _ x A
4 nfcv _ x vol .
5 4 1 nfco _ x vol . F
6 volioof vol . : * × * 0 +∞
7 6 a1i φ vol . : * × * 0 +∞
8 fco vol . : * × * 0 +∞ F : A * × * vol . F : A 0 +∞
9 7 2 8 syl2anc φ vol . F : A 0 +∞
10 3 5 9 feqmptdf φ vol . F = x A vol . F x
11 2 adantr φ x A F : A * × *
12 simpr φ x A x A
13 11 12 fvvolioof φ x A vol . F x = vol 1 st F x 2 nd F x
14 13 mpteq2dva φ x A vol . F x = x A vol 1 st F x 2 nd F x
15 10 14 eqtrd φ vol . F = x A vol 1 st F x 2 nd F x