Metamath Proof Explorer


Theorem voliooico

Description: An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses voliooico.1 φA
voliooico.2 φB
Assertion voliooico φvolAB=volAB

Proof

Step Hyp Ref Expression
1 voliooico.1 φA
2 voliooico.2 φB
3 iftrue A<BifA<BBA0=BA
4 3 adantl φABA<BifA<BBA0=BA
5 2 recnd φB
6 5 subidd φBB=0
7 6 eqcomd φ0=BB
8 7 ad2antrr φAB¬A<B0=BB
9 iffalse ¬A<BifA<BBA0=0
10 9 adantl φAB¬A<BifA<BBA0=0
11 simpll φAB¬A<Bφ
12 11 1 syl φAB¬A<BA
13 11 2 syl φAB¬A<BB
14 simpr φABAB
15 14 adantr φAB¬A<BAB
16 simpr φAB¬A<B¬A<B
17 12 13 15 16 lenlteq φAB¬A<BA=B
18 oveq2 A=BBA=BB
19 18 adantl φA=BBA=BB
20 11 17 19 syl2anc φAB¬A<BBA=BB
21 8 10 20 3eqtr4d φAB¬A<BifA<BBA0=BA
22 4 21 pm2.61dan φABifA<BBA0=BA
23 22 eqcomd φABBA=ifA<BBA0
24 1 adantr φABA
25 2 adantr φABB
26 volioo ABABvolAB=BA
27 24 25 14 26 syl3anc φABvolAB=BA
28 volico ABvolAB=ifA<BBA0
29 1 2 28 syl2anc φvolAB=ifA<BBA0
30 29 adantr φABvolAB=ifA<BBA0
31 23 27 30 3eqtr4d φABvolAB=volAB
32 simpl φ¬ABφ
33 simpr φ¬AB¬AB
34 32 2 syl φ¬ABB
35 32 1 syl φ¬ABA
36 34 35 ltnled φ¬ABB<A¬AB
37 33 36 mpbird φ¬ABB<A
38 2 adantr φB<AB
39 1 adantr φB<AA
40 simpr φB<AB<A
41 38 39 40 ltled φB<ABA
42 39 rexrd φB<AA*
43 38 rexrd φB<AB*
44 ioo0 A*B*AB=BA
45 42 43 44 syl2anc φB<AAB=BA
46 41 45 mpbird φB<AAB=
47 ico0 A*B*AB=BA
48 42 43 47 syl2anc φB<AAB=BA
49 41 48 mpbird φB<AAB=
50 46 49 eqtr4d φB<AAB=AB
51 50 fveq2d φB<AvolAB=volAB
52 32 37 51 syl2anc φ¬ABvolAB=volAB
53 31 52 pm2.61dan φvolAB=volAB