Metamath Proof Explorer


Theorem voliooicof

Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis voliooicof.1 φ F : A 2
Assertion voliooicof φ vol . F = vol . F

Proof

Step Hyp Ref Expression
1 voliooicof.1 φ F : A 2
2 volioof vol . : * × * 0 +∞
3 2 a1i φ vol . : * × * 0 +∞
4 rexpssxrxp 2 * × *
5 4 a1i φ 2 * × *
6 3 5 1 fcoss φ vol . F : A 0 +∞
7 6 ffnd φ vol . F Fn A
8 volf vol : dom vol 0 +∞
9 8 a1i φ vol : dom vol 0 +∞
10 icof . : * × * 𝒫 *
11 10 a1i φ . : * × * 𝒫 *
12 11 5 1 fcoss φ . F : A 𝒫 *
13 12 ffnd φ . F Fn A
14 1 adantr φ x A F : A 2
15 simpr φ x A x A
16 14 15 fvovco φ x A . F x = 1 st F x 2 nd F x
17 1 ffvelrnda φ x A F x 2
18 xp1st F x 2 1 st F x
19 17 18 syl φ x A 1 st F x
20 xp2nd F x 2 2 nd F x
21 17 20 syl φ x A 2 nd F x
22 21 rexrd φ x A 2 nd F x *
23 icombl 1 st F x 2 nd F x * 1 st F x 2 nd F x dom vol
24 19 22 23 syl2anc φ x A 1 st F x 2 nd F x dom vol
25 16 24 eqeltrd φ x A . F x dom vol
26 25 ralrimiva φ x A . F x dom vol
27 13 26 jca φ . F Fn A x A . F x dom vol
28 ffnfv . F : A dom vol . F Fn A x A . F x dom vol
29 27 28 sylibr φ . F : A dom vol
30 fco vol : dom vol 0 +∞ . F : A dom vol vol . F : A 0 +∞
31 9 29 30 syl2anc φ vol . F : A 0 +∞
32 coass vol . F = vol . F
33 32 a1i φ vol . F = vol . F
34 33 feq1d φ vol . F : A 0 +∞ vol . F : A 0 +∞
35 31 34 mpbird φ vol . F : A 0 +∞
36 35 ffnd φ vol . F Fn A
37 19 21 voliooico φ x A vol 1 st F x 2 nd F x = vol 1 st F x 2 nd F x
38 1 5 fssd φ F : A * × *
39 38 adantr φ x A F : A * × *
40 39 15 fvvolioof φ x A vol . F x = vol 1 st F x 2 nd F x
41 39 15 fvvolicof φ x A vol . F x = vol 1 st F x 2 nd F x
42 37 40 41 3eqtr4d φ x A vol . F x = vol . F x
43 7 36 42 eqfnfvd φ vol . F = vol . F