Metamath Proof Explorer


Theorem volioore

Description: The measure of an open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volioore ABvolAB=ifABBA0

Proof

Step Hyp Ref Expression
1 volioo ABABvolAB=BA
2 1 3expa ABABvolAB=BA
3 iftrue ABifABBA0=BA
4 3 adantl ABABifABBA0=BA
5 2 4 eqtr4d ABABvolAB=ifABBA0
6 simpl AB¬ABAB
7 simpr AB¬AB¬AB
8 simpr ABB
9 simpl ABA
10 8 9 ltnled ABB<A¬AB
11 10 adantr AB¬ABB<A¬AB
12 7 11 mpbird AB¬ABB<A
13 vol0 vol=0
14 13 a1i ABB<Avol=0
15 8 adantr ABB<AB
16 9 adantr ABB<AA
17 simpr ABB<AB<A
18 15 16 17 ltled ABB<ABA
19 9 rexrd ABA*
20 8 rexrd ABB*
21 ioo0 A*B*AB=BA
22 19 20 21 syl2anc ABAB=BA
23 22 adantr ABB<AAB=BA
24 18 23 mpbird ABB<AAB=
25 24 fveq2d ABB<AvolAB=vol
26 10 biimpa ABB<A¬AB
27 26 iffalsed ABB<AifABBA0=0
28 14 25 27 3eqtr4d ABB<AvolAB=ifABBA0
29 6 12 28 syl2anc AB¬ABvolAB=ifABBA0
30 5 29 pm2.61dan ABvolAB=ifABBA0