Metamath Proof Explorer


Theorem volioore

Description: The measure of an open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volioore A B vol A B = if A B B A 0

Proof

Step Hyp Ref Expression
1 volioo A B A B vol A B = B A
2 1 3expa A B A B vol A B = B A
3 iftrue A B if A B B A 0 = B A
4 3 adantl A B A B if A B B A 0 = B A
5 2 4 eqtr4d A B A B vol A B = if A B B A 0
6 simpl A B ¬ A B A B
7 simpr A B ¬ A B ¬ A B
8 simpr A B B
9 simpl A B A
10 8 9 ltnled A B B < A ¬ A B
11 10 adantr A B ¬ A B B < A ¬ A B
12 7 11 mpbird A B ¬ A B B < A
13 vol0 vol = 0
14 13 a1i A B B < A vol = 0
15 8 adantr A B B < A B
16 9 adantr A B B < A A
17 simpr A B B < A B < A
18 15 16 17 ltled A B B < A B A
19 9 rexrd A B A *
20 8 rexrd A B B *
21 ioo0 A * B * A B = B A
22 19 20 21 syl2anc A B A B = B A
23 22 adantr A B B < A A B = B A
24 18 23 mpbird A B B < A A B =
25 24 fveq2d A B B < A vol A B = vol
26 10 biimpa A B B < A ¬ A B
27 26 iffalsed A B B < A if A B B A 0 = 0
28 14 25 27 3eqtr4d A B B < A vol A B = if A B B A 0
29 6 12 28 syl2anc A B ¬ A B vol A B = if A B B A 0
30 5 29 pm2.61dan A B vol A B = if A B B A 0