Metamath Proof Explorer


Theorem volivth

Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive B <_ ( volA ) , there is a measurable subset of A whose volume is B . (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Assertion volivth A dom vol B 0 vol A x dom vol x A vol x = B

Proof

Step Hyp Ref Expression
1 simpll A dom vol B 0 vol A B < vol A A dom vol
2 mnfxr −∞ *
3 2 a1i A dom vol B 0 vol A B < vol A −∞ *
4 iccssxr 0 vol A *
5 simpr A dom vol B 0 vol A B 0 vol A
6 4 5 sselid A dom vol B 0 vol A B *
7 6 adantr A dom vol B 0 vol A B < vol A B *
8 iccssxr 0 +∞ *
9 volf vol : dom vol 0 +∞
10 9 ffvelrni A dom vol vol A 0 +∞
11 8 10 sselid A dom vol vol A *
12 11 adantr A dom vol B 0 vol A vol A *
13 12 adantr A dom vol B 0 vol A B < vol A vol A *
14 0xr 0 *
15 elicc1 0 * vol A * B 0 vol A B * 0 B B vol A
16 14 12 15 sylancr A dom vol B 0 vol A B 0 vol A B * 0 B B vol A
17 5 16 mpbid A dom vol B 0 vol A B * 0 B B vol A
18 17 simp2d A dom vol B 0 vol A 0 B
19 18 adantr A dom vol B 0 vol A B < vol A 0 B
20 mnflt0 −∞ < 0
21 xrltletr −∞ * 0 * B * −∞ < 0 0 B −∞ < B
22 20 21 mpani −∞ * 0 * B * 0 B −∞ < B
23 2 14 22 mp3an12 B * 0 B −∞ < B
24 7 19 23 sylc A dom vol B 0 vol A B < vol A −∞ < B
25 simpr A dom vol B 0 vol A B < vol A B < vol A
26 xrre2 −∞ * B * vol A * −∞ < B B < vol A B
27 3 7 13 24 25 26 syl32anc A dom vol B 0 vol A B < vol A B
28 volsup2 A dom vol B B < vol A n B < vol A n n
29 1 27 25 28 syl3anc A dom vol B 0 vol A B < vol A n B < vol A n n
30 nnre n n
31 30 ad2antrl A dom vol B 0 vol A B < vol A n B < vol A n n n
32 31 renegcld A dom vol B 0 vol A B < vol A n B < vol A n n n
33 27 adantr A dom vol B 0 vol A B < vol A n B < vol A n n B
34 0red A dom vol B 0 vol A B < vol A n B < vol A n n 0
35 nngt0 n 0 < n
36 35 ad2antrl A dom vol B 0 vol A B < vol A n B < vol A n n 0 < n
37 31 lt0neg2d A dom vol B 0 vol A B < vol A n B < vol A n n 0 < n n < 0
38 36 37 mpbid A dom vol B 0 vol A B < vol A n B < vol A n n n < 0
39 32 34 31 38 36 lttrd A dom vol B 0 vol A B < vol A n B < vol A n n n < n
40 iccssre n n n n
41 32 31 40 syl2anc A dom vol B 0 vol A B < vol A n B < vol A n n n n
42 ax-resscn
43 ssid
44 cncfss cn cn
45 42 43 44 mp2an cn cn
46 1 adantr A dom vol B 0 vol A B < vol A n B < vol A n n A dom vol
47 eqid y vol A n y = y vol A n y
48 47 volcn A dom vol n y vol A n y : cn
49 46 32 48 syl2anc A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y : cn
50 45 49 sselid A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y : cn
51 41 sselda A dom vol B 0 vol A B < vol A n B < vol A n n u n n u
52 cncff y vol A n y : cn y vol A n y :
53 49 52 syl A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y :
54 53 ffvelrnda A dom vol B 0 vol A B < vol A n B < vol A n n u y vol A n y u
55 51 54 syldan A dom vol B 0 vol A B < vol A n B < vol A n n u n n y vol A n y u
56 oveq2 y = n n y = n n
57 56 ineq2d y = n A n y = A n n
58 57 fveq2d y = n vol A n y = vol A n n
59 fvex vol A n n V
60 58 47 59 fvmpt n y vol A n y n = vol A n n
61 32 60 syl A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y n = vol A n n
62 inss2 A n n n n
63 32 rexrd A dom vol B 0 vol A B < vol A n B < vol A n n n *
64 iccid n * n n = n
65 63 64 syl A dom vol B 0 vol A B < vol A n B < vol A n n n n = n
66 62 65 sseqtrid A dom vol B 0 vol A B < vol A n B < vol A n n A n n n
67 32 snssd A dom vol B 0 vol A B < vol A n B < vol A n n n
68 66 67 sstrd A dom vol B 0 vol A B < vol A n B < vol A n n A n n
69 ovolsn n vol * n = 0
70 32 69 syl A dom vol B 0 vol A B < vol A n B < vol A n n vol * n = 0
71 ovolssnul A n n n n vol * n = 0 vol * A n n = 0
72 66 67 70 71 syl3anc A dom vol B 0 vol A B < vol A n B < vol A n n vol * A n n = 0
73 nulmbl A n n vol * A n n = 0 A n n dom vol
74 68 72 73 syl2anc A dom vol B 0 vol A B < vol A n B < vol A n n A n n dom vol
75 mblvol A n n dom vol vol A n n = vol * A n n
76 74 75 syl A dom vol B 0 vol A B < vol A n B < vol A n n vol A n n = vol * A n n
77 61 76 72 3eqtrd A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y n = 0
78 19 adantr A dom vol B 0 vol A B < vol A n B < vol A n n 0 B
79 77 78 eqbrtrd A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y n B
80 7 adantr A dom vol B 0 vol A B < vol A n B < vol A n n B *
81 iccmbl n n n n dom vol
82 32 31 81 syl2anc A dom vol B 0 vol A B < vol A n B < vol A n n n n dom vol
83 inmbl A dom vol n n dom vol A n n dom vol
84 46 82 83 syl2anc A dom vol B 0 vol A B < vol A n B < vol A n n A n n dom vol
85 9 ffvelrni A n n dom vol vol A n n 0 +∞
86 8 85 sselid A n n dom vol vol A n n *
87 84 86 syl A dom vol B 0 vol A B < vol A n B < vol A n n vol A n n *
88 simprr A dom vol B 0 vol A B < vol A n B < vol A n n B < vol A n n
89 80 87 88 xrltled A dom vol B 0 vol A B < vol A n B < vol A n n B vol A n n
90 oveq2 y = n n y = n n
91 90 ineq2d y = n A n y = A n n
92 91 fveq2d y = n vol A n y = vol A n n
93 fvex vol A n n V
94 92 47 93 fvmpt n y vol A n y n = vol A n n
95 31 94 syl A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y n = vol A n n
96 89 95 breqtrrd A dom vol B 0 vol A B < vol A n B < vol A n n B y vol A n y n
97 79 96 jca A dom vol B 0 vol A B < vol A n B < vol A n n y vol A n y n B B y vol A n y n
98 32 31 33 39 41 50 55 97 ivthle A dom vol B 0 vol A B < vol A n B < vol A n n z n n y vol A n y z = B
99 41 sselda A dom vol B 0 vol A B < vol A n B < vol A n n z n n z
100 oveq2 y = z n y = n z
101 100 ineq2d y = z A n y = A n z
102 101 fveq2d y = z vol A n y = vol A n z
103 fvex vol A n z V
104 102 47 103 fvmpt z y vol A n y z = vol A n z
105 99 104 syl A dom vol B 0 vol A B < vol A n B < vol A n n z n n y vol A n y z = vol A n z
106 105 eqeq1d A dom vol B 0 vol A B < vol A n B < vol A n n z n n y vol A n y z = B vol A n z = B
107 46 adantr A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B A dom vol
108 32 adantr A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B n
109 99 adantrr A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B z
110 iccmbl n z n z dom vol
111 108 109 110 syl2anc A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B n z dom vol
112 inmbl A dom vol n z dom vol A n z dom vol
113 107 111 112 syl2anc A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B A n z dom vol
114 inss1 A n z A
115 114 a1i A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B A n z A
116 simprr A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B vol A n z = B
117 sseq1 x = A n z x A A n z A
118 fveqeq2 x = A n z vol x = B vol A n z = B
119 117 118 anbi12d x = A n z x A vol x = B A n z A vol A n z = B
120 119 rspcev A n z dom vol A n z A vol A n z = B x dom vol x A vol x = B
121 113 115 116 120 syl12anc A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B x dom vol x A vol x = B
122 121 expr A dom vol B 0 vol A B < vol A n B < vol A n n z n n vol A n z = B x dom vol x A vol x = B
123 106 122 sylbid A dom vol B 0 vol A B < vol A n B < vol A n n z n n y vol A n y z = B x dom vol x A vol x = B
124 123 rexlimdva A dom vol B 0 vol A B < vol A n B < vol A n n z n n y vol A n y z = B x dom vol x A vol x = B
125 98 124 mpd A dom vol B 0 vol A B < vol A n B < vol A n n x dom vol x A vol x = B
126 29 125 rexlimddv A dom vol B 0 vol A B < vol A x dom vol x A vol x = B
127 simpll A dom vol B 0 vol A B = vol A A dom vol
128 ssid A A
129 128 a1i A dom vol B 0 vol A B = vol A A A
130 simpr A dom vol B 0 vol A B = vol A B = vol A
131 130 eqcomd A dom vol B 0 vol A B = vol A vol A = B
132 sseq1 x = A x A A A
133 fveqeq2 x = A vol x = B vol A = B
134 132 133 anbi12d x = A x A vol x = B A A vol A = B
135 134 rspcev A dom vol A A vol A = B x dom vol x A vol x = B
136 127 129 131 135 syl12anc A dom vol B 0 vol A B = vol A x dom vol x A vol x = B
137 17 simp3d A dom vol B 0 vol A B vol A
138 xrleloe B * vol A * B vol A B < vol A B = vol A
139 6 12 138 syl2anc A dom vol B 0 vol A B vol A B < vol A B = vol A
140 137 139 mpbid A dom vol B 0 vol A B < vol A B = vol A
141 126 136 140 mpjaodan A dom vol B 0 vol A x dom vol x A vol x = B