Metamath Proof Explorer


Theorem volres

Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion volres vol = vol * dom vol

Proof

Step Hyp Ref Expression
1 resdmres vol * dom vol * x | y vol * -1 vol * y = vol * y x + vol * y x = vol * x | y vol * -1 vol * y = vol * y x + vol * y x
2 df-vol vol = vol * x | y vol * -1 vol * y = vol * y x + vol * y x
3 2 dmeqi dom vol = dom vol * x | y vol * -1 vol * y = vol * y x + vol * y x
4 3 reseq2i vol * dom vol = vol * dom vol * x | y vol * -1 vol * y = vol * y x + vol * y x
5 1 4 2 3eqtr4ri vol = vol * dom vol