Metamath Proof Explorer


Theorem volsn

Description: A singleton has 0 Lebesgue measure. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion volsn A vol A = 0

Proof

Step Hyp Ref Expression
1 snmbl A A dom vol
2 mblvol A dom vol vol A = vol * A
3 1 2 syl A vol A = vol * A
4 ovolsn A vol * A = 0
5 3 4 eqtrd A vol A = 0