Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Integrals
volsn
Next ⟩
itgvol0
Metamath Proof Explorer
Ascii
Unicode
Theorem
volsn
Description:
A singleton has 0 Lebesgue measure.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Assertion
volsn
⊢
A
∈
ℝ
→
vol
⁡
A
=
0
Proof
Step
Hyp
Ref
Expression
1
snmbl
⊢
A
∈
ℝ
→
A
∈
dom
⁡
vol
2
mblvol
⊢
A
∈
dom
⁡
vol
→
vol
⁡
A
=
vol
*
⁡
A
3
1
2
syl
⊢
A
∈
ℝ
→
vol
⁡
A
=
vol
*
⁡
A
4
ovolsn
⊢
A
∈
ℝ
→
vol
*
⁡
A
=
0
5
3
4
eqtrd
⊢
A
∈
ℝ
→
vol
⁡
A
=
0